TECHNICAL MANUAL

TECHNICAL MANUAL

......TE-3 FM EXCITER \qquad $994 \quad 6425 \quad 003$
:

THIS TECHNICAL MANUAL PROVIDES THE NECESSARY INFORMATION FOR THE APPLICATION, INSTALLATION, OPERATION, ADJUSTMENT AND MAINTENANCE OF THE TE-3 EXCITER.

HARRIS CORPORATION
Broadcast Products Division

MANUAL REVISIONHISTORY			
MCN OR REV.NO.	MCN OR REV. DATE	ECN NO.	DESCRIPTION OF CHANGE
6	$04 / 07 / 76$	20365	Page 6-15, Change Parts List No. 9946507 001 to 9946507002. Add the following components: C34, C35 - Cap., 3.9 uF, 35v-526 0012000 J3 --Adaptor "BNC" - 6200455000 J6 - Receptacle "BNC" - 6120403000 P3,P6 - Plug, "BNC" - 6100238000 R47-Res., 33k ohm, 1/2W - 5400085000 R46 - Res., 27k ohm, 1/2W - 5400083000 R48 - Pot., 10k ohm, 1/2W - 5500007000 Delete R9 and description from Parts List. Replace schematic $838 \quad 2026001$ with updated version no. 8384726001.
7	01/29/77	21750	Page 6-7, Parts List, change C23 to read: Cap., 100 uF, 35V, 5220454000 Replace schematic 8425828 001, Replace with updated Rev. J.
8	10/20/77	ERRATA	Page 5-2 Para. 5.9 AUDIO UNIT ALIGNMENT Change: A "Left-Right" signal of 400 Hz is applied to the left and right audio inputs and S 1 is switched to the stereo mode. Adjust R18 for a minimum 400 Hz signal level at J11-10 (L-R out) to A "left-Right" signal of 400 Hz is applied to the left and right audio inputs and S1 is switched to the stereo mode. Adjust R17 for a minimum 400 Hz signal level at J11-10 (L-R out).

MANUAL REVISION HISTORY

MCN OR REV.NO.	MCN OR REV. DATE	ECN NO.	DESCRIPTION OF CHANGE
9	09/30/81.	26057	Change: A "Left-Minus Right" signal of 400 Hz is then connected into the left and right audio inputs. Switch $S 1$ to the stereo mode position and adjust R17 for a minimum 400 Hz signal level at Jll-6 (L+R out) 'to A "Left-Minus Right" signal of 400 Hz is then connected into the left and right audio inputs. Switch S 1 to the stereo mode position and adjust R18 for minimum 400 Hz signal level at Jll-6 (L+R out). Page 6-10, Table 6.8 Change Rl from Res 300 ohm 7W, 5460229 000 to Res. 300 ohm 10w, 5%, Non Inductive, 5441633 000. R3 still retains

WARNING

THE CURRENTS AND VOLTAGES IN THIS EQUIPMENT ARE DANGEROUS. PERSONNEL MUST AT ALL TIMES OBSERVE SAFETY REGULATIONS.

This manual is intended as a general guide for trained and qualified personnel who are aware of the dangers inherent in handling potentially hazardous electrical/electronic circuits. It is not intended to contain a complete statement of all safety precautions which should be observed by personnel in using this or other electronic equipment.

The installation, operation, maintenance and service of this equipment involves risks both to personnel and equipment, and must be performed only by qualified personnel exercising due care. HARRIS CORPORATION shall not be responsible for injury or damage resulting from improper procedures or from the use of improperly trained or inexperienced personnel performing such tasks.

During installation and operation of this equipment, local building codes and fire protection standards must be observed. The following National Fire Protection Association (NFPA) standards are recommended as references:

- Automatic Fire Detectors, No. 72E
- Installation, Maintenance, and Use of Portable Fire Extinguishers, No. 10
- Halogenated Fire Extinguishing Agent Systems, No. 12A

WARNING
ALWAYS DISCONNECT POWER BEFORE OPENING COVERS, DOORS, ENCLOSURES, GATES, PANELS OR SHIELDS. ALWAYS USE GROUNDING STICKS AND SHORT OUT HIGH VOLTAGE POINTS BEFORE SERVICING. NEVER MAKE INTERNAL ADJUSTMENTS, PERFORM MAINTENANCE OR SERVICE WHEN ALONE OR WHEN FATIGUED.

Do not remove, short-circuit or tamper with interlock switches on access covers, doors, enclosures, gates, panels or shields. Keep away from live circuits, know your equipment and don't take chances.

WARNING

IN CASE OF EMERGENCY ENSURE THAT POWER HAS BEEN DISCONNECTED.

1. If victim is not responsive follow the $A-B-C s$ of basic life support.

PLACE VICTIM FLAT ON HIS BACK ON A HARD SURFACE

(A) AIRWAY

IF UNCONSCIOUS, OPEN AIRWAY

LIFT UP NECK PUSH FOREHEAD BACK CLEAR OUT MOUTH IF NECESSARY OBSERVE FOR BREATHING

(B) BREATHING

 IF NOT BREATHING, BEGIN ARTIFICIAL BREATHING

TILT HEAD PINCH NOSTRILS MAKE AIRTIGHT SEAL

4 aUICK FULL BREATHS
REMEMBER MOUTH TO MOUTH RESUSCITATION MUST BE COMMENCED AS SOON AS POSSIBLE

CHECK CAROTID PULSE

IF pulse absent, BEGIN ARTIFICIAL CIRCULATION
(C) Circulation

DEPRESS STERNUM 1 1/2"TO $\mathbf{2 "}^{\prime \prime}$

APPROX. ONE RESCUER $80 \mathrm{SEC} .\left\{\begin{array}{l}15 \text { COMPRESSIONS } \\ 2 \text { 日UICK BREATHS }\end{array}\right.$

APPROX. TWO RESCUERS
$60 \mathrm{SEC} .\left\{\begin{array}{l}5 \\ 5 \\ 1 \\ \text { COMREATH }\end{array}\right.$

NOTE: DO NOT INTERRUPT RHYTHM OF COMPRESSIONS WHEN SECOND PERSON IS GIVING BREATH

Call for medical assistance as soon as possible.
2. If victim is responsive.
a. keep them warm
b. keep them as quiet as possible
c. loosen their clothing
(a reclining position is recommended)

FIRST-AID

Personnel engaged in the installation, operation, maintenance or servicing of this equipment are urged to become familiar with first-aid theory and practices. The following information is not intended to be complete first-aid procedures, it is brief and is only to be used as a reference. It is the duty of all personnel using the equipment to be prepared to give adequate Emergency First Aid and thereby prevent avoidable loss of life.

Treatment of Electrical Burns

1. Extensive burned and broken skin
a. Cover area with clean sheet or cloth. (Cleanest available cloth article.)
b. Do not break blisters, remove tissue, remove adhered particles of clothing, or apply any salve or ointment.
c. Treat victim for shock as required.
d. Arrange transportation to a hospital as quickly as possible.
e. If arms or legs are affected keep them elevated.

NOTE

If medical help will not be available within an hour and the victim is conscious and not vomiting, give him a weak solution of salt and soda: 1 level teaspoonful of salt and $1 / 2$ level teaspoonful of baking soda to each quart of water (neither hot or cold). Allow victim to sip slowly about 4 ounces (a half of glass) over a period of 15 minutes. Discontinue fluid if vomiting occurs. (Do not give alcohol.)
2. Less severe burns - (1st \& 2nd degree)
a. Apply cool (not ice cold) compresses using the cleanest available cloth article.
b. Do not break blisters, remove tissue, remove adhered particles of clothing, or apply salve or ointment.
c. Apply clean dry dressing if necessary.
d. Treat victim for shock as required.
e. Arrange transportation to a hospital as quickly as possible.
f. If arms or legs are affected keep them elevated.

REFERENCE: ILLINOIS HEART ASSOGIATION

AMERICAN RED CROSS STANDARD FIRST AID AND PERSONAL SAFETY MANUAL (SECOND EDITION)

TABLE OF CONTENTS
SECTION PAGE
FRONTISPIECE i
INTRODUCTORY INFORMATION ii
TABLE OF CONTENTS iii
1 DESCRIPTION $1-3$
1.1 GENERAL 1-1
1.2 OPTIONAL EQUIPMENT: 1-1
1.3 TECHNICAL CHARACTERISTICS 1-1
Fig. 1.1 Front View 1-4
Fig. 1.2 Front View $1-5$
Fig. 1.3 Front View 1 -6
2
INSTALLATION 2-1
2.1 DAMAGE CLAIM INFORMATION 2-1
2.2 UNPACKING AND INSPECTION 2-1
2.3 UNPACKING CHECK LIST. 2-1
2.4 MECHANICAL DETAILS 2-1
2.5 POWER REOUIREMENTS \& CONNECTION 2-1
2.6 RF OUTPUT CONNECTION 2-2
2.7 ADDITIONAL CONNECTIONS 2-2
Fig. 2.1 Rear View 2-3
3 OPERATION AND ADJUSTMENT 3-1
3.1 FRONT PANEL CONTROLS 3-1
Table 3.1 Fuse and Test Point Location 3-1
3.2 TURN-ON PROCEDURE 3-2
3.3 MODULATED OSCILLATOR ADJUSTMENT 3-2
3.4 ALARM CIRCUITS ADJUSTMENT 3-2
3.5 AFE MULTIMETER 3-3THEORY OF OPERATION4-1
4.1 GENERAL 4-1
4.2 POWER SUPPLY 4-1
4.3 FOWER AMPLIFIER 4-1
4.4 AUDIO UNIT 4.1
4.5 MODULATED OSCILLATOR 42
4.6 AUTOMATIC FREQUENCY CONTROL UNIT 4-4
4.7 STEREO GENERATOR 4.6
4.8 SUB-CARRIER GENERATOR 4.7
Fig. 4.1 Internal View Power Supply 4-9
Fig. $4.2 \quad$ Power Amplifier $4-10$
Fig. 4.3 Internal View Modulated Oscillator 4-11
Fig. 4.4 Internal View AFC Unit 4-12
Fig. 4.5 Internal View - Audio Unit 4-13
Fig. 4.6 Internal View - Stereo Gererator 4-14
Fig. 4.7 Internal View - SCA Generator. 4-15
5 TROUBLESHOOTING 5-1
5.1 GENERAL 5-1
5.2 NO CARRIER OUTPUT 5-1
5.3 CARRIER OFF FREQUENCY 5-1
5.4 HIGH DISTORTION 5-1
5.5 HIGH NOISE 5-2
5.6 EXCESSIVE CROSSTALK 5-2
5.7 POOR STEREO SEPARATION 5-2
5.8 POWER AMPLIFIER TUNING 5-2
5.9 AUDIO UNIT ALIGNMENT 5-2
5.10 STEREO GENERATOR ALIGNMENT 5-3
5.11 SUB-CARRIER GENERATOR SETTING 5-3
6 PARTS LIST 6-1
6.1 CHASSIS 6-1
6.2 POWER SUPPLY 6-1
6.3 10 W POWER AMPLIFIER 6-3
6.4 AUDIO UNIT 6-4
6.5 MODULATED OSCILLATOR 6-5
6.6 AFC UNIT 6-7
6.7 FILTER ASSEMBLY 6-10
6.8 ISOLATION PAD, 3 dB 6-10
6.9 STEREO GENERATOR 6-11
6.10 SCA GENERATOR 6-15
7 DRAWINGS 7-1
Fig. 7.1 Block Diagram 7-2
Fig. 7.2 Interconnecting Diagram 7-3
Fig. 7.3 Power Supply 7-4
Fig. 7.4 Modulated Oscillator 7-5
Fig. 7.5 AFC Únit 7-6
Fig. 7.6 10 W Amplifier 7-7
Fig. $7.7 \quad$ Audio Unit 7.8
Fig. 7.8 SCA Generator 7-9
Fig. 7.9 Stereo Generator 7-10
Fig. 7.10 AT-1 Isolation Pad 7-11

SECTION 1 -DESCRIPTION

GENERAL

The TE-3 Exciter consists of five basic, interconnected, modular units; Power Supply, Power Ampliffer, Modulated Oscillator, Automatic Frequency Control, and Audio Section. See Fig. 1.1.

The frequency range of the exciter is from 87.5 MHz to 108 MHz and it is factory tuned to the customer specified frequency.
The exciter is completely self-contained, The oscillator of the exciter operates at the carrier output frequency eliminating frequency multipliers. This insures improved carrier stability and excellent frequency response when the power level is increased in conjunction with high power transmitters. The output power of the exciter is 10 to 15 watts.

1.2 OPTIONAL EQUIPMENT

The TE-3 exciter has provisions for three optional plug in modules; two SCA Generators, and one Stereo Generator. Figure 1.1 shows the TE-3 with Stereo Generator and SCA Generator installed.
1.3 TECHNICAL CHARACTERISTICS
1.3.1 MECHANICAL:

Width:	$19^{\prime \prime}$ (Fits standard rack mount)
Height:	$14^{\prime \prime}$
Depth:	$1214^{\prime \prime}$
Weight:	(Uncrated) 52 lbs. (monaural only)
	3 Jbs. (SCA generator)
Finish:	Beige
	6 ibs. (stereo generator)

Semiconductors used throughout.
ELECTRICAL: (Monaural Operation)
Frequency Range: $\quad 87.5$ to 108 MHz
Power Output: 10 Watts
RF Harmonics: Suppression meets or exceeds all FCC requirements

RF Output Impedance: $\quad 50$ ohms (BNC connector)
Frequency Stability: $.001 \%$ or better
Modulation Capability: Capable of $\pm 100 \mathrm{kHz}(\pm 75 \mathrm{kHz}=100 \%$ modulation)

Audio Input Impedance: $\quad 600$ ohms balanced
Audio Input Level: $\quad \begin{array}{ll} & +10 \mathrm{dBm} \pm 2 \mathrm{~dB} \text { for } 100 \% \text { modulation } \\ & \text { at } 400 \mathrm{~Hz}\end{array}$

Audio Frequency Response:

Distortion:

FM Noise:

AM Noise:

Temperature:
Altitude:
Power Requirements:

Standard 75 microsecond FCC preemphasis curve, $\pm 1 \mathrm{~dB}, 30-15,000 \mathrm{~Hz}$
. $5 \%, 30$ to $15,000 \mathrm{~Hz}$
65 dB below 100% modulation (ref. 400 Hz)

70 dB below reference carrier AM modulated 100\%
-20° to $+50^{\circ} \mathrm{C}$
7,500 feet
117 VAC , singie phase, $60 \mathrm{~Hz}, 85$ watts
1.3.3 EL.ECTRICAL: (Stereophonic Operation)

Pilot Oscillator:
Pilot Stability:
Audio Input I mpedance (Left and Right):

Audio Input Level:
(Left and Right):

Audio Frequency Response (Left and Right):

Distortion (Left and Fight):
FM Noise (Left and Right):

Stereo Separation (Left to Right or Right to Left Channel):

Sub-Carrier Suppression
(With or without modulation present):

* Crosstalk (Main channel to sub-channel or sub-channel to main channel):

Sub-Carrier 2nd Harmonic Suppression (76 kHz):

Crystal controlled
$19 \mathrm{kHz}+1 \mathrm{~Hz}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$

600 ohms balanced
$+10 \mathrm{dBm} \pm 1 \mathrm{~dB}$ for 100% modulation at 400 Hz

Standard 75 microsecond, FCC preemphasis curve, $\pm 1 \mathrm{~dB}, 50-15,000 \mathrm{~Hz}$
1% or less, $50-15,000 \mathrm{~Hz}$
60 dB (minimum) below 100\% modulation (ref. 400 Hz)

35 dB (minimum) 50 to $15,000 \mathrm{~Hz}$

42 dB (minimum) below 90% modulation

42 dB (minimum) below 90% modulaton, $50-15,000 \mathrm{~Hz}$

NOTE: Stereophonic measurements to be made with an FCC approved monitor.

* Measurement to be made using an L=R signal for sub-channel crosstalk and an $L=-R$ signal for main channel crosstalk.

Frequency:
Frequency Stability:
Oscillator Type:

Modulation:
Modulation Capability:

Audio Input Impedancé:
Audio Input Level:

Audio Frequency Response:

Distortion:
FM Noise (Main channel not modulated):

Crosstalk (Sub-channel to main channel and stereophonic sub-channel):
** Crosstalk (Main channel to sub-channel):

Any SCA channel between 25 and 75 kHz
$\pm 500 \mathrm{~Hz}$
Two Colpitts heterodyned to produce desired output frequency

Direct FM
Capable of $\pm 7.5 \mathrm{kHz}(\pm 5 \mathrm{kHz}$ considered 100% modulation)

600 ohms balanced
$+8 \mathrm{dBm}, \pm 3 \mathrm{~dB}$ for 100% modulation at 400 Hz

41 kHz and $67 \mathrm{kHz}, 50$ microsecond, modified pre-emphasis

67 kHz response modified for proper operation when used with stereo to conform to FCC specs
1.5% (or better) $30-7,000 \mathrm{~Hz}$

55 dB minimum (ref. 100% modulation 400 Hz)
-60 dB or better

50 dB below 100% modulation (ref. 400 Hz) with main channel modulated 70% by frequencies $30-15,000 \mathrm{~Hz}$
** Crosstalk measurements to be made from an FCC approved monitor using 75 microsecond de-emphasis.

Automatic Mute Level:

Remote Control:

Variable from 0 to 40 dB below 100% modulation

Exciter is internally equipped to be locally or remoteiy switched from monaural to stereo operation. On monaural operation, normal right audio input connections are switched to the 41 kHz SCA position, if used. Remote functions are accomplished by a single set of external relay contacts, (closure required for stereo operation). An external relay must provide a holding function.

FRONT
VIEW
FIG. 1.1

PILOT
PHASE

FRONT
VIEW
FIG. 1.2

[^0]FIG. 1.3

SECTION 2 -INSTALLATION

2.1
 DAMAGE CLAIM INFORMATION

In case of damage, notify the delivering carrier at once. After he has approved the damage report order new part\{s) from Gates Radio Company, using the parts list for description and individual identification.

UNPACKING AND INSPECTION
The container and packing should be removed only after a careful examination of the outside of the carton for indications of possible mishandling.

Retain packing material until installation is complete and the TE-3 is placed in operation.

2.3 UNPACKING CHECK LIST

When the TE-3 is shipped as a separate unit, the following items are furnished and packed separately:

EQUIPMENT GATES PART NO.
Basic
TE-3 Cabinet
9922735001
Power Supply
99217260 C 2
Modulated Oscillator (Module)
9922696001
Audio Unit (Module) AFC Control (Module)

9921830001
Power Amplifier (Module)
9922697001
Technical Manual
9921715001

Optiona:
SCA Generator 1 or 2 Modules(s) 9946507001
Stereo Generator (Module) 9946533001
2.4 MECHANICAL DETAILS

The modular design assures easy access to all parts during inspection, routine maintenance and repair. Each module may be released from the chassis by means of thumb screws, and operated external to the chassis.

The exciter output may be connected into a dummy load, antenna, or a following amplifier stage.
2.5 POWER REQUIREMENTS \& CONNECTION

A 117 V AC, 60 Hz , single phase, 85 watt, fuse or circuit breaker protected, power source is required. No additional equipment is necessary for operation.

Connect the input power to terminals 7 \& 8 of TB1. See Fig. 2.1.
When the $A C$ input is 117 VAC , the black and green/black primary leads of the transformer T1 should be used. If the AC input voltage is less than 105 VAC , the black and white/black primary leads shouid be used. If the AC input voltage is greater than 125 VAC , the black and white primary leads should be used.

R.F. OUTPUT CONNECTION

The R.F. connection to the exciter is a BNC connector (J 1) on the rear of the unit. See Fig. 2.1. Use coaxial cable type RG58A/U.
2.7 ADDITIONAL CONNECTIONS - See Fig. 2.1

Additonal connections are located on the terminal board TB1 on the rear of the exciter. They are as follows:

1-2-3: Left Audio Input (2 is shieid)
4-5-6: \quad Right Audio Input (5 is shield) or SCA

- 7-8:

9-10:
11-12-13:
14-15:
$16-17-18-19-20$:
AC Input:
AFC Alarm
(N.C.)

SCA Audio
(12 is shield)
Stereo-Mono Switch
Spare

REAR
VIEW
FIG. 2.1

SECTION 3 - OPERATION \& ADJUSTMENT

3.1 FRONT PANEL CONTROLS

The following table gives the identification and function of the front panel controls, (See Fig. 1.1 for basic modules).

TABLE 3.1
FUSES \& TEST POINTS LOCATION AND IDENTIFICATION

IDENTIFICATION	TYPE		FUNCTION
Power Supply			
F2			
F3	3mp Fuse		
S1	2 Amp Fuse		Protect +24 Volt circuits
A1	Toggle Switch		Protect $115 \vee \mathrm{AC}$ circuits
Green Light		Indicates unit energized	

Power Amplifier
R11
Modulated Oscillator
R29 Knob controlled Pot. AFC Adjust
Audio Unit

Toggle Switch

Pggle Switch Potentiometer DC Microammeter 5 position knob controlled switch

STEREO/MONO/REMOTE SELECT

AFC Unit

S1
R48
M1
S2

Stereo Generator

S1	Toggle Switch
TJ1	Jack (Test)
TJ2	Jack (Test)
R68	Potentiometer
R53	Potentiometer
R27	Potentiometer
R24	Potentiometer

SCA Generator

TJ1	Jack (Test)
TJ2	Jack (Test)
R30	Potentiometer
S1	4 position knob
R32	Potentiometer

AFC-ON/OFF FREQ. ADJUST Indicates indexed function Indicates meter function

> COMPOSITE/PILOT OFF COMPOSITE OUTPUT GROUND L + RGAIN Adjust OUTPUT LEVEL Adjust PILOT GAIN Adjust PILOT PHASE Adjust

OUTPUT
GROUND
OUTPUT LEVEL Adjust
MUTE DELAY Select
MUTE LEVEL Adjust 3-1

3.2 TURN ON PROCEDURE

INITIAL
Connect input, output, and power leads as outined in Section 2.
Turn on main power switch S-1 on the power supply and allow approximately thirty seconds warmup. Set the AFC "OFF/ON" switch to the "ON" position. The red "Alarm" lamp should be extinguished.

NOTE: If it is not, slowly rotate the "AFC Adjust" control on the modulator until it is extinguished.

Adjust the "DRIVE" control on the Power Amplifier for required output.
Select stereo or mono operation with the toggle switch on the audio unit.
After approximately 30 minutes adjust the frequency by rotating R-48 "FREQ ADJ" on the AFC unit for correct frequency as read on a frequency monitor or counter.

The TE-3 is now ready for operation.
NOTE: In routine operation it is recommended that the TE-3 be left on at all times.
3.3 MODULATED OSCILLATOR ADJUSTMENT - See Fig. 4.3

The front panei control "AFC ADJUSTMENT" is a vernier frequency adjustment. Two additional factory adjustments, coarse frequency adjustment (L3) and the modulator bias adjustment (R6) are located on the shock mounted chassis.

Turn the "AFC ADJUSTMENT" control to a mid-range position and turn the meter switch on the AFC unit to the "AFC" position. Turn the AFC switch to " ON^{\prime} ".

NOTE: Within a few seconds the "Alarm" lamp should extinguish and the AFC meter should read on scale.

Adjust the "AFC ADJUSTMENT" on the modulated oscillator for a reading between 29 and 31 on the $A F C$ meter.

NOTE: The recommended operating range of the "AFC" position of the meter switch is from 22 to 35. Operation within this range will assure that the modulated oscillator is always within the capture range of the automatic frequency control unit. This will assure that the automatic frequency control will regain a locked condition after a power failure or other interruption of power.

3.4 ALARM CIRCUITS ADJUSTMENT

The operation of the AFC alarm system may be verified in the following manner.

Momentarily disconnect the RF connector from the "AFC" input jack on the modulated oscillator. Note that the "ALARM" lamp lights immediately. Fe-insert the connector and note that the lamp extinguishes within a few seconds.

Note that the AFC meter is in the "AFC" position and rotate the "AFC ADJUSTMENT" fully counterciockwise. Note that the meter reading has decreased to approximately 15. Momentarily turn the "AFC" switch off and on. Note that the "ALARM" lamp ifluminates and the meter returns to mid-scale. Rotate the "AFC AD.JUSTMENT" ciockwise untij the "ALARM" lamp is extinguished. Set the "AFC ADJUSTMENT" for a reading between 29 and 31 on the AFC meter.

3.5	AFC MULTIMETER	:
	POSITION	INDICATION
	"Mod"	Output of Modulator Frequency Divider Chain. Nominal Reading: 35-45
	"Ref"	Output of Reference Frequency Divider Chain. Nominal Reading: 35-45
	" $\mathrm{AFC}^{\prime \prime}$	AFC Buss Voitage. Nominal Reading: 25-35
	"Mod Out"	Power Output of Modulator. Nominal Reading: Refer to Final Test Data supplied with exciter.
	"PA Out"	Power Output of Exciter. Nominal Reading: Refer to Final Test Data supplied with exciter.

SECTION 4 - THEORY OF OPERATION

4.1 GENERAL

The TE-3 Exciter is self-contained with capabilities in excess of minimum FCC specifications.

Each exciter is factory tested on the customer's frequency and satisfactory operation is verified.
4.2 POWER SUPPLY - See Fig. 7.3 Schematic \& Fig. 4.1 Photograph

The power supply consists of a two section unit. The two sections supply a regulated 24 DC volts and a regulated 150 DC volts respectively. Both sections receive AC voltage from a common power transformer.

NOTE: The 150 volt section is not used in the TE-3.

In the 24 volt supply, the AC voltage supplied by transformer T1, is rectified by diodes CR 6 through CR9. The rectified voltage is applied to filter section $\mathrm{C} 3, \mathrm{C} 4$, and R 7 . Q4 is a series control transistor that regulates the 24 volt supply. A sample of the output voltage is compared with reference voltage in Q7. The reference voltage is supplied by temperature compensated diodes CR 10 and CR11. Any change in the output voltage is amplified by $Q 5$ and 06 . This amplified output causes series control Q 4 to return the output voltage to the value set by R11.

> NOTE: The output voltages will remain relatively constant over a temperature range of -20 to $+70^{\circ} C$ The output volt. ages will remain constant as the line voltage is varied from 85 to 115% of normal 117 volt $A C$ supply. Normal load variations will cause no voltage change in these supplies.
4.3 POWER AMPLIFIER - See Fig. 7.6 Schematic \& Fig. 4.2 Photograph

The power amplifier is a four stage amplifier. Transistors Q1, 02 , and $\mathrm{Q3}$ are single stage amplifiers. Q4 and Q5 are paralleled to obtain the desired output level.

Maximum power is 10 to 15 watts. Power output is determined by the setting of R11, the input drive control. Transformers T1 and T2, along with the associated capacitors C4 and C7 match the output impedance of these stages to the low input impedance of the following stages. Inductors I..1, L2, and capacitors C14 and C15 match the output impedance of Q3 to the low impedance of Q 4 and Q5. The output circuit of Q 4 and Q 5 is a modified Pi type of circuit consisting of L5, L6, and C19 and C20.
4.4 AUDIO UNIT - See Fig. 7.7 Schematic \& Fig. 4.5 Photograph

The audio unit supplies the modulated oscillator with a! main channel modulation (excluding SCA). When the function switch is in the "MONO" position, left audio input is filtered and pre-emphasized and applied directly to the modulated oscillator unit. The composite stereo signal including the pilot is completely removed from the modulation input of the modulated oscillator.

If the function switch is in the "STEREO" position, left and right audio inputs are filtered, pre-emphasized and applied to a resistive matrix. They then connect to the stereo generator. The composite stereo signal including pilot returns through the audio unit for application to the modulation input of the modualted oscillator.

Left audio input circuitry consists of three fundamental types of circuits. First, is a 19 kHz notch filter consisting of L 1 and Cl .

Resistors R1 through R5 and capacitors C2, C3, C4 along with inductor L2 form a 75 microsecond pre-emphasis section.

The primary and secondary impedance of T 1 is 600 ohms. Right audio input circuitry is exactly identical to left audio input circuitry.
When selector switch S1 is in the STEREO position, output of the left preemphasis section is connected to the primary of TT . The secondary of $\mathrm{T} T$ connects into the matrix consisting of R13 through R18. At the same time, right audio input signals are routed through the right 19 kHz filter, preemphasis network and T2. The secondary of T2 is also connected into the resistive matrix.

Output of the matrix then produces the $L \cdots R$ and $L+R$ signals for application to the signal unit of the stereo generator. At the same time the composite signal along with the 19 kHz pilot is connected through the relay to the input terminals of the modulated oscillator.

When S 1 is placed in the MONO position, audio input signals connected to the left audio input, again pass through a 19 kHz notch filter and the left preemphasis network. There the signal terminates in R11. R11 may be adjusted to produce the desired modulation level for a given level of audio input.

Also with S 1 in the MONO position the normal right stereo input terminals are connected through relay contacts K 1 for application to the input of a 41 kHz sub-carrier generator unit if it is used. The 41 kHz SCA (if used) is muted when audio is not applied.

The stereo generator is completely bypassed when $S 1$ is in the MONO position and no stereo signals (or pilot) can modulate the main carrier.

When S1 is in the REMOTE position the mono to stereo functions may be performed by the coritäcts of a remote control relay. This relay must performia holding function.
4.5 MODULATED OSCILLATOR - See Fig. 7.4 Schematic \& Fig. 4.3 Photograph

The modulated osciilator accepts monaural, composite stereo, and SCA signals and generates a stable, low distortion, frequency modulated signal in the standard FM broadcast band of 87.5 to 108 MHz .

The modulated oscillator consists of three sections; a stable oscillator, a buffer amplifier, and a power supply regulator.

There are four inputs to the modulated oscillator; baseband for monaural or composite stereo, two isolated SCA inputs, and an automatic frequency control input.

Three outputs from the modulated oscillator are as follows: An RF output of approximately 500 millivolts into a fifty ohm load for automatic frequency control (J-2). An RF output of 20 milliwatts to drive a power amplifier (J-3) and a DC output proportional to the RF output level that provides a convenient means of monitoring the RF output of the modulator $\{(11-9)$.

4.5.1 OSGILLATOR

The oscillator is a modified "CLAPP" circuit operating at the assigned carrier frequency at a power level of approximately 150 miliwatts.

The oscillator frequency is adjusted by L3 and R29. L3 is an interna coarse frequency adjustment used to set the oscillator frequency within the adjustment range of the vernier frequency adjustment R29.

NOTE: $\because \angle 3$ is factory adjusted and should not be reset in the field.

Resistor $R 29$ is a ten turn potentiometer located on the front panel. See Fig. 1.1. R29 provides a reverse bias voltage to CR3, a voltage variable capacitor, "used as an electrically adjustable frequency control. A DC control voltage from the automatic frequency control uinit maintains the electrical adjustment and is the frequency controlling element in the system.

Diodes CR1 and CR2 are connected to the oscillator tank circuit and are biased to the linear region by resistor R6, the "Modulator Bias" control. See Fig. 4.3.

Modulation from the audio unit, or SCA generators, or stereo generator is applied to the junction of diodes CR1 and CR2.

4.5.2 BUFFER AMPLIFIER

A broadband matching network consisting of L4 and C12 matches the collector circuit of the oscillator transistor Q1 to the attenuator network, R13, R14, and R15. The attenuator provides a nonreactive load and isolation for the signal. Transistor Q2 amplifies the oscillator output to approximately 500 milliwatts.

A broadband low pass filter comprised of C23, C24, and L6 matches the collector circuit of Q2 to the output attenuator, R20, R21, and R22.

The attenuator network reduces the output level of the buffer stage to a level sufficient to drive the power amplifier and provides additional isolation for the oscillator circuit.

A sample of the RF output of the buffer stage is directed to the automatic frequency control system. An additional sample of the RF output is rectified by diode CR8. The DC voltage derived from diode CR8 is used to provide a meter reading on the AFC unit proportional to the RF output of the modulated oscillator.

NOTE: The oscillator and buffer transistors are low noise silicon "overlay" transistors designed specifically for VHF oscillator and amplifier applications.

4.5.3 POWER SUPPLY REGULATOR

The power supply regulator is a conventional pass transistor type using a zener, regulated reference voltage applied to the base of Q3. The reference voltage is temperature compensated by diode CR7.
4.6 AUTOMATIC FREOUENCY CONTROL UNIT

See Fig. 7.5 Schematic \& Fig. 4.4 Photograph
The automatic frequency control unit is designed to operate in conjunction with the modulated oscillator to provide a stable, automatically controlled, FM broadcast signal in the standard FM broadcast band of 87.5 to 108 MHz .
The automatic frequency control unit is divided into five sections: Reference oscilfator, frequency dividers, phase detector," power supply regulator, and alarm circuitry.

The AFC unit operates on the principle of the phase locked loop. The input signal frequency from the modulated oscillator is phase locked to an internal crystal controlled reference.

The AFC unit is energized from the FM exciter main frame with $24 \mathrm{~V} D C$ at 300 milliamps. In addition, 500 millivolts of RF at the carrier frequency is necessary for operation.

A multimeter is incorporated (see Fig. 1.2), to monitor five parameters associated with the AFC unit, the modulated oscillator, and the power amplifier. A red pilot light will indicate any malfunctions and a front panel switch disables the AFC unit during initial tune-up and in case of maffunction.

Exact center frequency adjustment is assured by a vernier frequency control.

4.6.1 REFERENCE OSCILLATOR

The reference osciilator is a standard crystal controlled oscillator utilizing an integrated circuit, Z12. The oscillator frequency is adjusted with capacitor C27 and diode CR10.

The first two transistors of the integrated circuit Z12 form an emitter coupled amplifier and the third transistor is a buffer amplifier to isolate the load from the crvstal oscillator. The crystal is a high stability unit enclosed in a temperature controlled oven. The oven temperature is maintained at $60^{\circ} \mathrm{C}$ by the closed loop system consisting of integrated circuit Z13, a differential amplifier, thermistor RT1, transistor Q6, and resistor R38. R38 is used as the oven heater element. The oven temperature is evaluated by thermistor RT1. The output of RT1 controls the bias voltage at the base of Z13B. The bias voltage is compared with the reference setting at the base of Z13A and the difference between the two voltages is amplified and applied to the base of control transistor Q5. Q5 regulates the current through the heater resistor R38 and controls the oven temperature.

4.6.2 FREQUENCY DIVIDERS

Two frequency divider systems are incorporated in the AFC unit, one for the modulated oscillator output and one for the reference oscillator output.

The modulated oscillator divider consists of integrated circuits Z1 through Z7 and divides the input frequency by 16,384 . This is necessary to eliminate the phase shift in the incoming signal caused by the frequency modulation. The large division ratio permits full range modulation from twenty hertz upward without upsetting the phase detector function.

All of the integrated circuits are bi-stable multi-vibrators or "Flip Fiops". The resultant output of either side of the flip flops is a frequency one half of the input frequency. The output at test point TP1 is $1 / 16$ th of the incoming freguency.

Transistor Q1 is a buffer amplifier used to isolate and amplify the output of Z4 to a level sufficient to drive $\mathbf{Z 5}$. Integrated circuits $\mathbf{Z 5}, \mathbf{Z 6}, \mathbf{Z 8}$, and $\mathbf{Z 9}$ divide each incoming signal by sixteen. Integrated circuit $Z 7$ divides the incoming signal by four.

The reference oscillator frequency divider consists of integrated circuits 28 and $Z 9$ and divides the frequency of the reference oscillator by 256 . This is done in order to operate the crystal in the most stable range.

4.6.3 PHASE DETECTOR

The phase detector consists of integrated circuit Z10. The IC is a fip-flop circuit with the toggle input connected to the reference oscillator frequency divider which keys alternate sides of the flip-flop. The resultant output of the phase detector is a square wave with a duty cycle of fifty percent. The output of the modulated oscillator frequency dividers is also a square wave. This signal is differentiated by capacitor C 9 and resistor R 5 to form a sharp pulse. The pulse is used to "set' the flip-flop Z10.

> NOTE: If the frequencies at the input of the phase detector are exactly equal, the output of the phase detector will be a square wave with a duty cycle proportional to the relative phase of the two input signals.

The square wave output of the phase detector is amplified by transistor 02 to a level of approximately twenty volts peak to peak. The signa! is then filtered by resistors R9 and R10 and capacitors C13 and C14 to remove the reference frequency component of the signal. The amplitude of the remaining DC component is then proportional to the phase difference of the input signals and is used to control the modulated oscillator frequency.

4.6.4 ALARM CIRCUITS

Five circuits are monitored by the alarm circuits, three directly and two indirectly. The alarm output, indicating functional failures, is displayed on the front panel by indicator lamp DS-1. The alarm output is also available in the form of normally open and normally closed relay contacts through the power connector.

The circuits directly monitored by the alarm system are the reference and modulated oscillator frequency dividers and the "out of lock" condition. The circuits indirectly monitored are the reference oscillator output and the modulated oscillator output through their respective dividers.

The output of the reference frequency dividers is detected and converted to a DC voltage by diodes CR1 and CR2. The detected voltage is amplified by Z11C and Z11D.

NOTE: Both amplifier stages are biased in a saturated condition or cut off.

In normal operation both stages are saturated and there is no output from Z11D. If a failure occurs in this section, the voltage at the collector of $\mathrm{Zi1D}$ will increase toward five volts. Diode CR5 will conduct, turning on Z14B and Q3. When O3 conducts, alarm lamp DS-1 illuminates and relay K 1 is energized. This action disables the associated transmitter.

The modulated oscillator and its associated frequency dividers are monitored in an identical manner by Z11A and Z11B and their associated components.

An "out of lock" condition exists when the modulated oscillator is operating at a frequency outside the lock in range of the phase detector and the automatic frequency control circuit. When this condition occurs the phase detector output will contain a large $A C$ component in addition to the normal comparison frequency and DC component. The AC component is directly proportional to the frequency error between the two signals. The AC component is amplified by Z14A and detected by diodes CR11 and CR12. The resultant DC voltage turns on 214B and Q3 in a manner identical to the presentation in the previous section.

The comparison frequency present in the normal output of the phase detector is removed by the filtering action of R27, R28, C20, and C21.

NOTE: The frequency response of the amplifier is such that it will not respond to all signals outside the capture range of the phase detector.

4.7 STEREO GENERATOR

A 19 kHz pilot signal is generated by a crystal controlled oscillator Q 1 for the composite stereo. Q2 isolates this signal and the 19 kHz signal is applied to the 19 kHz tuned amplifier stage Q3. The secondary of transformer T1 is connected to a push-pull doubler circuit consisting of transistors Q4 and Q5.

This stage in conjunction with transformer $T 2$ generates a 38 kHz signal. The 38 kHz signal is applied to the balanced sub-carrier modulator circuit consisting of transformers T3 and T4 and diodes CR1 through CR4.

An L-R input signal from the audio unit is also applied to the balanced subcarrier modulator.

An L-R double sideband suppressed carrier signal appears at the output of T4. Harmonics of this signal are reduced by forward biasing of diodes CR 1 through CR4 and by adjusting the harmonic null control R37. Sub-carrier null control R48 balances out the residual 38 kHz sub-carrier to a level of approximately -45 dB .

NOTE: Second harmonics of the double sideband signal fall into the band pass of the normal 67 kHz SCA signal. If these second harmonic signals are not attenuated, crosstalk from the stereo signal will interfere with the sub-carrier channel.

The $L+R$ input signal from the audio unit is combined with the L-R double sideband signal at the junction of C22, R53, and R60. A circuit consisting of $L 3$ through $L 6$ and capacitors C29 and C30 adjusts the time delay of the L+R input to match the L-P signal. A composite stereo signal appears at the junction of C22, R53, and R60. This signal is applied to the emitter follower Q12 from the output level control R53.

The composite stereo signal is amplified by Q13 and applied to the base of emitter follower Q14.

The total composite signal with $10 \% 19 \mathrm{kHz}$ pilot signal appears at the emitter of Q14.

A pilot signal from terminal 4 of transformer $T 1$ is applied to emitter follower Q6. Maximum separation is maintained by the adjustment of the pilot phase by the phase control between Q6 and emitter follower Q7. A pilot gain control is incorporated at the emitter of transistor 07 . The pilot signal is added to the composite output by connecting R27 to the emitter resistor of Q14.

The second harmonic signal from R53 via 08 is amplified and inverted by 09. This signal is applied to emitter follower Q10 and from Q10 to the amplifier Q13, thus cancelling the harmonics.

NOTE: Crosstalk null control 833 cancels any remaining crosstalk.

4.8
 SUB-CARRIER GENERATOR

The sub-carrier generator generates the sub-carrier frequencies (41 or 67 kHz) by utilizing two self-excited oscillators.

Q1 and Q2 are the individual Colpitts oscillators. Q1 oscillates at 900 kHz and Q2 oscillates at 941 or 967 kHz .

The outputs from Q1 and Q2 are mixed by diodes CR1 and CR2. Filter network L5, C13, and C14 remove all undesired frequencies.

The sub-carrier frequency is amplified by Q 3 and applied to a tunable low pass filter. The filter consists of L6, L7, L8, C19, C20, C21, and C22, and removes all harmonics of the sub-carrier frequency.

By variation of the base bias voltage the oscillators are frequency modulated at an audio rate. The audio modulation is applied to the oscillators Q1 and Q 2 by the push-pull audio transformer $\overline{1} 1$.

NOTE: An audio shaping network is connected prior to the primary of T1. The network is adjusted so that the audio response will increase several dB at 5 kHz with respect to the 400 Hz reference. The response will roll-off above 5 kHz .

When this generator is used as a 67 kHz sub-carrier unit for use with stereo, capacitors C1 and C2 are disconnected. The circuit then functions as a deemphasis circuit. The roll-off is above 3 kHz to avoid generating side bands that would interfere with the stereo signal.

A portion of the audio input is applied to a muting circuit consisting of Q 4 , $\mathrm{Q5}, \mathrm{Q} 6$, and $\mathrm{Q} 7 . \mathrm{Q} 4$ and Q 5 amplify and square the input audio. The resulting square wave signal is rectified by diodes CR3 and CR4.

When audio is applied to Q6 the DC level at the base of Q6 and the bias of Q7 keeps Q6 and Q7 from conducting.

When audio input is removed, O6 and Q7, conduct causing the impedance from the junction of C17 and C18 to chassis ground to drop to a few ohms. This causes the sub-carrier output to be attenuated approximately 50 to 60 dB .

NOTE: The length of time between sub-carrier shut off and when the audio is removed from 04 is determined by a capacitor network at the base of 06 in conjunction with the mute time constant switch 51 .

The Mute Level control, R32, determines the audio level required to turn OFF the sub-carrier.

INTERNAL VIEW
POWER SUPPLY
FIG. 4.1

POWER AMPLIFIER
FIG. 4.2

INTERNAL VIEW
MODULATED OSCILLATOR
FIG. 4.3

INTERNAL VIEW
(OVEN COVER REMOVED)
AFC UNIT
FIG. 4.4

INTERNAL VIEW
AUDIO UNIT
FIG. 4.5

INTERNAL VIEW
STEREO GENERATOR
FIG. 4.6

INTERNAL VIEW
SCA GENERATOR
FIG.4-7

SECTION 5-TROUBLESHOOTING

5.1 GENERAL

Each individual unit is thoroughly tested on the customer frequency before shipment. If any unit fails to operate properly, insure that all connectors fit properly into the respective receptacies on each individual module.

Isolate a problem to an individual module by referring to the overall block diagram Fig. 7.1. Refer to the appropriate schematic of the module in question.

5.2 NO CARRIER OUTPUT

Check that the power supply is providing 24 V DC. If the pilot lamp on the power supply is extinguished, insure that S 1 on the power supply is "ON". Determine the condition of the 117 VAC coninections at the terminals on the rear of the exciter. Check the condition of $F 3$, the 117 volt fuse on the power supply. Check fuse F1 located on the rear of the cabinet.

If the pilot lamp on the power supply lights; check F2, the 24 V fuse on the power supply.

If the power supply is providing the proper voltages, check the output coax of the exciter for a short or open circuit.

Determine if the modulated oscillator is providing output by listening to an FM Receiver tuned to the operating frequency. Check the output level of the modulated oscillator as read on the AFC meter.

If the modulated oscillator is functioning properly and is providing power output to the 10 watt amplifier, trace the RF signal through the amplifier stages and compare $A C$ and DC voltages with the schematic values.

5.3 CARRIER OFF FREQUENCY

Measure the "Locked" and "Unlocked" frequency. If the frequency is further away from the correct value when the AFC defeat switch is on, the fault is probably in the AFC unit. Determine if the fine frequency control knob has been misadjusted. Check the power supply voltages.

If the AFC unit isn't functioning, the AFC switch may be turned off and the modulated oscillator tuned to carrier frequency and operated temporarily without AFC.

NOTE: Drift must be checked at short intervals when operating in this mode.

NOTE: Some types of frequency monitors will display a nearly "ON FREOUENCY" reading when the carrier is several hundred kHz off frequency. The correct frequency is the point where the AFC "Locks" instead of kicking the frequency monitor off scale.

5.4 HIGH DISTORTION

Units other than the transmitter will usually be responsible for high distortion; especially the console, amplifier, limiters, and audio lines. There are no active elements present in the exciter at audio frequencies.

$5.5 \quad$ HIGH NOISE

First establish the noise as to type. If the noise is 120 Hz ripple, check the power supply. Disconnect the audio lines. If the noise originates from the audio lines, check that the center tap of the audio output transformer of the audio equipment is not grounded. In a remote controlied system, check all isolation devices. Determine if the modulated oscillator is causing the noise by disconnecting the audio unit and any SCA generators used.
5.6 EXCESSIVE CROSSTALK (Main \& Stereo Channel to SCA Channel)

Determine if crosstalk is present on the audio input lines. The most common cause of high crosstalk is in the detector and IF strip of the SCA monitor or SCA receiver. Determine if tigh crosstalk is present on more than one receiver.

NOTE: . Crosstalk may occur in improperly tuned stages in either the transmitter or receiver. The tuned stages of the exciter amplifier are very broad and should not cause trouble.
5.7 POOR STEREO SEPARATION

Check the wave form at the output of the stereo generator and at the output of the monitor or receiver detector. Determine if the pilot is on and is modulating the main carrier 8 to 10%. Check the pilot phase.
5.8 POWER AMPLIFIER TUNING

All internal adjustments are tuned for maximum power output. Ri1, the input "DRIVE" control on the front panel is then set for the desired power output.
5.9 AUDIO UNIT ALIGNMENT - See Fig. 4.5

S1 is placed in the "Mono" position to adjust the audio unit.
A $400 \mathrm{~Hz}+10 \mathrm{dBm}$ signal is applied to the left audio input. Adjust R11 for 100% carrier modulation.

A "Left=Right" signal of 400 Hz ' is applied to thee left and right audio inputs. and S1 is switched to the stereo mode. Adjust R17 for a minimum 400 Hz signal level at J11-10 (L.-R out).

A "Left=Minus Right" signal of 400 Hz is then connected into the left and right audio inputs. Switch S 1 to the stereo mode position and adjust R18 for a minimum 400 Hz signal level at J11-6 ($L+R$ out).

Apply a 19 kHz audio signal to the left audio input terminal and adjust L1 for a minimum 19 kHz output signal at $\mathrm{J} 11-6$ ($\mathrm{I}+\mathrm{R}$ out). Apply a 19 kHz audio signal to the right audio input terminal and adjust L3 for a minimum 19 kHz output signal at J11-6 ($\mathrm{L}+\mathrm{R}$ out). Adjust L 2 and L 4 for a 16.8 dB increase in output level at 15 kHz as compared to a 400 Hz reference signal. Measure this signal at J11-6 (L+R out).

Connect the $\mathrm{L}=\mathrm{R}$ and $\mathrm{L}=\mathrm{R}$ signals into the exciter input terminals. Adjust L 1 through L. 4 for minimum L+R to L-R crosstalk at 15 kHz . Measure at the L.-R and $L+R$ terminals of the matrix.

5.10 STEREO GENERATOR ALIGNMENT - See Fig. 4.6

C 2 is adjusted to set the pilot frequency as observed on a frequency counter or monitor.

R20, the doubler balance control, is adjusted for minimum 19 kHz ripple on the composite output signal. This adjustment is performed without a pilot. signal.

The sub-carrier null control, R48, is adjusted for a minimum 38 kHz output. Harmonic null control, R37 is adjusted for minimum second harmonic output from the balanced modulator.

NOTE: The adjustmentrof R48 and R37 may be observed on an approved stereo monitor, wave analyzer, or ultrasonic display.

R53, the output level control, is adjusted to modulate the main carrier 90% with a 400 Hz left or right audio input signal of +10 dBm . This level excludes the pilot.

L1 is tuned to the second harmonic of the 38 kHz double sideband signal and R33, the crosstalk null control, is adjusted to cancel out the 76 kHz component remaining at the output of the stereo generator.

The pilot gain control R27 is adjusted to modulate the main carrier 10%. The pilot phase control, R24 is adjusted for best separation as read on a stereo monitor.
5.11 SUB-CARRIER GENERATOR SETTING - See Fig. 4.7

The first SCA generator adjustments consist of tuning the output filter so that there are essentially no harmonics of the sub-carrier present in the output of the SCA generator.

L6 and L8 are adjusted for maximum attenuation of the second harmonic of the SCA frequency. L7 is adjusted to minimize ripple over the sub-carrier passband.

NOTE: The passband is considered to be the sub-carrier frequency $\pm 15 \mathrm{kHz}$.

L3 is adjusted for an approximate output frequency of 900 kHz and L 4 for approximately 900 kHz plus the sub-carrier frequency. The L4 frequency is generally 941 or 967 kHz . L3 or L4 is then fine tuned for the exact SCA frequency.

NOTE: The SCA frequency must be compared to a frequency standard. A non-metallic tool with narrow screwdriver type blade is necessary for this adjustment.

The output level control, R30, is set to modulate the main carrier at the required level.

The Mute Level control, R32, is adjusted to turn off the sub-carrier output if the audio input signal disappears.

NOTE: Optimum setting is 30 to 40 dB below 100% modulation of the sub-carrier.

Connect an audio signal at 400 Hz to the proper SCA input terminals of the exciter and modulate the suib-carrier 100%. Reduce the level of the audio input 30 or 40 dB and adjust R32 so the sub-carrier output disappears.

NOTE: S1, the mute delay, is adfusted to whatever muting speed is desired after the audio is removed from the input.


```SECTION 6 - PAR'IS LIST - Cont'd. 6.2 - POWER SUPPTYY - Cont'd. 992 1726002 9921913002 P.C. Board```						
SYMBROL	DESCRIPTION	GATES PART NO.	SYMBOL	DESCRIPTION	GATES PAR'	T No.
JI	Panel   Connector	6100419000	TI	Transformer   Power	4720536	
Q4	$\begin{aligned} & \text { Transistor } \\ & \text { 2N3055 } \end{aligned}$	3800043000	$\cdots$	Lamp Socket (Less Lens)	4060367	
Q5	Transistor $2 N 3054$	3800041000	$\begin{aligned} & \mathrm{XF} 2, \\ & \mathrm{XF} 3 \end{aligned}$	Fuseholder	4020013	000
Q6	$\begin{aligned} & \text { Transistor } \\ & 40319 \end{aligned}$	3800044000				
Q7	$\begin{aligned} & \text { Transistor } \\ & \text { 2N697 } \end{aligned}$	3800098000	$\begin{aligned} & \mathrm{XQ1} \\ & \mathrm{XQ4} \\ & \text { XQ5 } \end{aligned}$	Not Used in Powe   Not Used in Powe	er Supply   er Supply	
R7	Res 2 ohms 25W	5420438000	$\begin{aligned} & \mathrm{XQ6}, \\ & \text { XQ7 } \end{aligned}$	Transipad T0-5 case	4040198	
R8	Res IK ohm 3W $1 \%$	5480192000		Heat Sink	8143250	
R10	Not. Used in Power	er Supply		Lens, Green	4060378	000
$\begin{aligned} & \text { R11A, } \\ & \text { R11B } \end{aligned}$	Res 510 ohms	5400042000				
$\begin{aligned} & \text { R12, } \\ & \text { R13, } \end{aligned}$	Not Used in Power Supply					
R14	Res 1.6 K ohms 3W 1\%	$5480197000$				
R15	Same as R8					
R1.8	Res 10K ohms教 $5 \%$	5400936000				
SI	$\begin{aligned} & \text { Switch Toggle } 6040005000 \\ & \text { SPST, 6A, 125V } \end{aligned}$					
6-2 Warning, disconnect primary power prior to servicing. $\quad$ Rev. 7/74						



Rev. A: 7/,82

SECTION 6-PARTS LIST - CONT'D.
6.3-10W POWER AMPLIFIER - CONT'D.

6.4 - AUDIO UNIT $\quad 9921830001$. $\quad 9921909001$ P.C. Board

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
C1	$\begin{aligned} & \text { Cap } 025 \mathrm{uF} \\ & 100 \mathrm{~V} \end{aligned}$	508	0308	000	K1	Relay	572	0134	000
C 2   thru C4	$\begin{aligned} & \text { Cap. }, .03 u F \\ & 300 \mathrm{~V} . \end{aligned}$	500	1186	000					
C5	Same as Ci				$\begin{aligned} & \mathrm{L} 1 \\ & \text { thru } \\ & \mathrm{L} 4 \end{aligned}$	Inductor 2.7 to 3.3 mH	492	0328	000
C6   thru   C8	Same as C2								
C9	$\begin{aligned} & \text { Cap } 1000 \mathrm{uF} \\ & 6 \mathrm{~V} \end{aligned}$	$522$	0514	$+000$	R1 thru	Res 270 ohms $1 / 2 \mathrm{w}$ 1\%	548	0139	000
CiO	$\begin{aligned} & \text { Cap } \\ & 1 \mathrm{kV} \end{aligned}$	516	0074		R4	Fes 1100 hms			
$\cdot$					85	Fies 110 ohms \% W 1\%	548	0217	000
CR 1	Diode 1N914	384	0134	000	$\begin{aligned} & \text { R6 } \\ & \text { thru } \\ & \text { R9 } \end{aligned}$	Same as R1			
$J 1$	Not Used in Audio Unit				R10	Same as RS			
$\begin{aligned} & \text { thru } \\ & \mathrm{J} 10 \end{aligned}$					R11	Trim Pot 500 ohms 1 W	552	0800	000

Rev. A: 7/6.
Warning, disconnect primaxy power prior to servicing.

## SECTION 6 - PARTS LIST - CONT'D.

## 6.4 - AUDIO UNIT - CONT'D.

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
R12	Res 10 K ohms 1/2W5\%	540	0073	000	S1	Switch SPDT Center Off	604	0336	000
R13	Res 600 ohms 1/2W 1\%	548	0218	000					
814	Same as R 13								
R 15	Fes 560 ohms \% W 5\%	540	0043	000	$\begin{aligned} & \mathrm{T} 1 \\ & \text { thru } \\ & \mathrm{T} 2 \end{aligned}$	Input Transformer (Matched Pair)	914	8783	001
816	Same as R 15				$\therefore$	:			
R17	Trim Fot 100 ohms 1 W	552	0797	000	XK1	Relay Socket	404	0209	000
R18	Same as R 17								
819	Res 750 ohms $1 / 2$ W 5\%	540	0046	000					
820	Res 300 ohms 1/2 W 5\%	540	0036	000					



SECTION 6-PARTS LIST-CONT'D.

## 6.5 - MODULATED OSCILLATOR - CONT'D.



## SECTION 6 -PARTS LIST - CONT'D.

6.5 - MODULATED OSCILLATOR - CONT'D.


		6.6-AFC UNIT				$\begin{array}{ccc} 992 & 2697001 \\ 992 & 2702001 \\ \text { DESCRIPTION } \end{array}$	P.C. Board		
SYMBOL	DESCRIPTION	gATES PART NO.			SYMBOL		GATES PART NO.		
C1	Cap 220 pF 500 V	500	0754	000	C26	Same as C7			
$\begin{aligned} & \mathrm{C} 2 \\ & \text { thru } \\ & \mathrm{C}_{6} \end{aligned}$	Cap , 001 uF $\ddagger \mathrm{kV}$	516	0054	000	C27	Cap Variabie 2.5 to 11 pF	518	0047	000
C7	Cap . 05 uF 100 V	516	0435		C23	Cap 120 pF 500 V	500	0826	000
	Not Used in AFC Unit				C29	Same as C2			
C8						Cap 82 pF 500 V	500	0823	000
C9	Same as C2								
C10	Not Used in AFC Unit				C31	Cap 01 uF 1 kV	516	0081	000
C11	Cap 05uF 100 V		0435	000	C32	Same as C2			
					C33	Cap 100 uF 12 V	522	0210	000
C12	Same as Cll				C34	Cap 1000 uF 10 V	522	0422	000
C13	Cap 22 uF 100 V		0475	000					
C14	Sama as C13								
C15	Cap 100 uF 50 V	522	0394		thru CR7				
C16	Cap 1 uF 100 V	516	0453	000	CR8		386	0135	000
C22						1N4733A			
c23	$\begin{aligned} & \text { Cap., } \\ & 35 \mathrm{~V} \end{aligned}$		0454000		CR9	Same as CR1			
C24	Cap 250 UF 3 V	522	0164	000	CR 10	Varicap MV1626	528	0017	000
C25	Same as C23								
Rev. A:	7/82								6.7

## SECTION 6 - PARTS LIST - CONT'D.

6.6-AFG UNIT - CONT'D.


Warning, disconnect primary power prior to servicing.

## SECTION 6 -PARTS LIST - CONT'D.

## 6.6 - AFC UNIT - CONT'D.

SYMBOL	DESCRIPTION	GATES PART NO.			SYMBOL	DESCRIPTION	GATES PART NO.		
F27	Same as R26	\%			S1	Switch Toggle DPDT	604	0320	000
R28	Same as R14								
R29	Same as R 17				S2	Switch SP 5 Pos	600	0477	000
R30	Same as R5								
R31	Same as F 4				XDS1	Socket, Lamp	406	0376	000
832	Res 220 ohms 1/4 W5\%	540	0896	000	S.	Lens, Red	406	0374	000
R33	Same as R 20				x01	Not Usect in AFC Unit			
R34	Pot 5 K ohms	550	0257	000	X02	Transipad for TO-5 Case	404	0798	000
R35	Res 2.7 K ohms $1 / 4$ W $\%$	540	0922	000	X03	Same as $\times 02$			
R36	Same as R26				X04	Socket, Transistor	404	0206	000
9.37	Res 3.3 K ohms y W W \%	540	0924	000	$\times 05$	Same as $\times \mathrm{O} 4$			
					XY 1	Socket, Crystal	404	0132	000
R38	Res 50 ohms 5 w	542	1143	000	Z1	Intecrated Circuit	382	0032	000
R39	Res 750 ofhm Th. $5 \%$		0329	000	$\begin{aligned} & 22 \\ & \text { thru } \end{aligned}$	Integrated Circuit MC-1013L	382	0033	000
R40	Same as R26				Z4				
R49	Res 6.8 K ohms 1/4 W 5\%	540	0932000		Z5	Integrated Circuit SN7493N	382	0034	000
					26	Same as Z5			
R42	Same ats R37				Z7	Integrated Circuit MC-853P	382	0035	000
R43	Same as R2				28	Same as 75			
R44	Same as R2				29	Same as 25			
R45	Same as R 41				Z10	Integrated Circuit MC-848P	382	0016	000
R46	Same as R37				211	Integrated Circuit CA-3018	382	0018	000
847	Same as R3				Z. 12	Same as Zit			
R.48	Pot 10 K ohms (Locking)	550	0007	000	Z13	$\begin{aligned} & \text { Differential Amp } \\ & \text { TD-101 } \end{aligned}$	382	0020	000
R49	Res 10 K ohms $1 / 4 \mathrm{~W} \%$	540	0936	000	Z14	Same as 213			
R51	Same as R3								
RT1	$\begin{aligned} & \text { Thermistor } \\ & 45 \mathrm{TG}-2 \end{aligned}$	559	0002	000					
Rev.	7/82								

SECTION 6 - PARTS LIST - CONT'D.
6.7-FILTER ASSEMBLY 9922736001




Warning, disconnect primary power prior to servicing.

## SECTION 6 -PARTS LIST - CONT'D.

## 6.9 - STEREO GENERATOR - CONT'D.



Rev. 4/74
Warning, disconnect primary power prior to sexvicing.

## SECTION 6 -PARTS LIST - CONT'D.

## 6.9-STEREO GENERATOR - CONT'D.



Rev. 4/74
Warning, disconnect primary power prior to servicing.

## SECTION 6 -PARTS LIST - CONT'D.

6.9 - STEREO GENERATOR - CONT'D.


## XQ16

Warning, disconnect primary power prior to servicing.

SECTION 6 - PARTS LIST - CONT'D.


Warning, disconnect primary power prior to servicing.

## SECTION 6-PARTS LIST - CONT'D.

SCA GENERATOR - CONT'D.


Warning, disconnect primary power prior to servicing,

SECTION 6 - PARTS LIST - CONT'D.
SCA GENERATOR - CONT'D.


SECTION 7 - DRAWINGS


Warning, disconnect primary power prior to servicing,


ARRIS CORPORATION Broaccast Procucts Oivistom
13 Hampsnire Syeet Ouncy inimors 62301
arning, disconnect primary power prior to servicing.
 HARRIS CORPORATION Broaccust Products Dwision
123 Hampshire Streer Cumay !llinois 62301




Warning, disconnect primary power prior to servicing.


8425827001

Warning, disconnect primary power prior to servicing.




NOTE:
ALL CAPACITOAS IN UF UNLESS OTHERWISE STATED
VOLTAGE WEASUREMENTS WITH HP-4IOB VTVM USING
RF Probe for rims value
Yoliafs our ouput level
4 \& 05 ARE A MATCHED PAIR


HARRIS CORPORATION Browxamitremets Division
:23 Mamishore Stree: Cuncy lurous 62301
Warning, disconnect primary power prior to servicing.




[^0]:    FRONT
    VIEW

