TECHNICAL MANUAL

CC-II

TAPE CARTRIDGE PLAYBACK

TABLE OF CONTENTS
SECTION PACE
INTRODUCTORY PAGE i.
SAFETY NOTICE ii
LIABILITY LIMITATION ii
CAUTIONARY NOTICE ii
1.0 DESCRIPTION AND SPECIFICATIONS 1-1
1.1 General 1-1
1.2 Specifications (Technical Data) 1-1
2.0 INSTALLATION 2-1
2.1 Unpacking and Inspection 2-1
2.2 Installation Procedure 2-1
2.2.1 Playback, Monophonic 2-1
2.2.2 Playback, Stereophonic 2-1
2.2.3 Program Output Impedance 2-1
2.2.4 Record Amplifier, Program Input 2-1
2.2.5 Record Amplifier Input Impedance 2-2
Fig. 2.1, Input Transformer Board 2-2
2.2.6 Remote Control Connections 2-2
Fig. 2.2, Record/P1ayback (Rear View)
Chart 2.1, External Connections, Playback 2-3
Chart 2.2, External Connections, Record 2-3
3.0 OPERATION 3-1
3.1 Control Functions, Playback 3-1
3.2 Record Amplifier Control Functions 3-1
3.3 Playback Procedure 3-2
3.4 Recording Procedure 3-2
3.5 Recording Test Tapes For Equipment Checkout 3-3
3.6 Threshold Level Test Cartridges 3-3
4.0 THEORY OF OPERATION 4-1
4.1 Playback Program Amplifier (Mono or Left Stereo Channel) 4-1
4.2 Cue Sensor Card 4-1
4.3 Record Program Amplifier 4-1
4.3.1 Bias Oscillator 4-2
4.3.2 Tone Oscillator 4-2
4.3.3 Control Circuits 4-3
5.0 ADJUSTMENTS AND MAINTENANCE 5-1
5.1 Adjustments and Cleaning, Playback 5-1
5.1.1 Heads 5-1
5.1.2 Capstan and Pinch Roller 5-1
5.1.3 Solenoid 5-1

> Table of Contents, CC-II, Cont'd.
SECTION PAGE5.1.4 Pinch Roller Cross Shaft
5.1.5 Program Amplifier 5-15-1
5.1.6 Cue Sensors 5-15.2 Head Replacement
Fig. 5.1, Head Adjustments
Fig. 5.2, Head Wiring (Rear View)
5.2.1 Height Adjustment 5-3
5.2.2 Azimuth Adjustment 5-4
5.3 Deck Adjustments 5-4
5.3.1 Cross Shaft Assembly 5-4
Fig. 5.3, Head/Guide Height Gauge
Fig. 5.4, Head Assembly, Tape Guide
Fig. 5.5, Capstan Adjustment Gauge
Fig. 5.6, Pinch Roller Adjustment Gauge
Fig. 5.7, Tape Deck Dimensions (Dwg. 非828 6862 001)
5.3.2 Motor Position 5-5
5.3.3 Solenoid Adjustment 5-5
5.4 Operating Voltages, CC-2 Playback 5-6
5.4.1 Monophonic Program Amplifier (994 6801 001) 5-6
Stereophonic Program Amplifier (994 6802 001) 5-6
5.4.2 Cue Sensor (994 6826 001) 5-6
5.4.3 Power Control Board (992 3111 001) 5-7
5.4.4 Q1 Voltage Regulator 5-7
5.4.5 Record/Program Amplifier (994 6899001) 5-7
5.4.6 Bias Oscillator (992 4582 001) 5-8
5.4.7 Tone Oscillator (994 6898 001) 5-8
5.5 Recording Amplifier Adjustment Controls 5-8
5.5.1 Record/Program Amplifier Alignment 5-8
5.5.2 Cue Record Level Adjustment 5-9
5.5.3 Cue Frequency 5-10
6.0 PARTS LIST 6-1/6-16
7.0 DRAWINGS
Gates Dwg. No. 8430447 001, Schematic, Playback, CC-II8527896 001, Schematic, Record/Playback CC-II

1.1 General

The CC-II tape cartridge machine will accept $N A B$ " A ", " $B^{\prime \prime}$ and "C" size cartridges. The solid state electronics utilize all silicon transistors and integrated circuits for temperature and gain stability. Plug-in circuit cards, relays, heads, switches, and motor have provisions for quick and covenient access, for ease of maintenance. Ground switching of external control functions provides protection for equipment and personnel.

The heart of the CC-II is its hysteresis, synchronous motor, with direct capstan drive. This motor assembly, mounted on the heavy half inch aluminum deck, with full swing pressure roller, offers tape accuracy comparable to the finest reel-to-reel machines.

The high quality, laminated heads are built with an all-metal hyperbolic face providing for long wear and low oxide accumulation. Three tape guides along with a dummy head* fitted into the left cartridge slot, assures the best in tape path guidance.
*On playback only Models.
1.2 Specifications (Technical Data)

Frequency Response:

Noise: $\quad 55 \mathrm{~dB}$ (Mono), 52 dB (Stereo) below THD level, at 400 Hz

Equalization: In accordance with NAB cartridge Recording and Reproducing Standards. CCIR equalization available on special order

Output: $\quad+18 \mathrm{dBm}$ clipping point, normally 0 dBm with standard NAB level recording. 600 ohm balanced, with 150 ohm as optional connection

Cue Signals:

Tape Speed:
1000 Hz Primary Cue, 150 Hz Secondary and 8000 Hz Tertiary. Cue realys are available as optional equipment

7-1/2 inches per second, 3-3/4, or 15 inch on special order

Tape Drive System: Direct Capstan Drive, sealed ball bearings. Tape start and stop time: Adjustable, $0.1 \mathrm{Sec} . \mathrm{minimum}$

Warning, disconnect primary power prior to servicing.

Tape Speed Accuracy:	0.1%, or better
Wow and Flutter:	0.2\%, or less
Heads:	NAB Standard
Remote Control:	All control functions by ground switching
Power Source:	$117 \mathrm{VAC}, \pm 10 \%, 60 \mathrm{~Hz} .50 \mathrm{~Hz}$ on special order
Power Requirements:	70 Watts, maximum
Ambient Temperature:	$55^{\circ} \mathrm{C}$. maximum
Dimensions:	Rackmount-
	Height, 7 inches (17.78 cm)
	Width, 19 inches (48.26 cm)
	Depth, 12 inches (30.48 cm)
	Desktop Cabinet-
	Height, 5-1/2 inches (13.97 cm)
	Width, 17-1/4 inches (43.90 cm)
	Depth, 12-7/8 inches (32.70 cm)
Weight:	30 Pounds (13.61 kg)

External 24 Volt DC Load Current 200 mA .

2．1 Unpacking and Inspection

Remove all packing material and carefully lift the unit from the box．Check the equipment against the Packing Slips．Visually inspect the unit for any apparent damage，and for missing or loose components．Check for proper operation of the front panel controls． If evidence of any damage is found，contact the delivering carrier and Gates Division－Harris－Intertype Corporation at once．After the carrier approves the damage report which indicates he will accept your billing for the damage，order new parts as necessary from Gates Division－Harris－Intertype Corp．Our billing for these parts，plus transportation expense，plus your repair labor costs，will comprise your claim to the transporting carrier．

2．2 Installation Procedure
The location in an individual station will be determined by the arrangement of the main control room facilities．The placement of equipment and wiring should be planned carefully before any installation work is started．Care should be taken to provide for adequate ventilation．

2．2．1 Playback，Monophonic
Connect a two conductor，shielded cable between the desired audio console input terminals and the 600 ohm program output terminals 非3 and 5 of playback connector J2．The shield of the cable should be connected to terminal 非1．See FIG．2．2．

2．2．2 Playback，Stereophonic
Connections for the Stereo left channel are the same as for the Monophonic audio channe1．The Stereo right channel is connected to terminals 非 4 and 6 ，with pin 非2 for connection to the shield， Phasing should be carefully observed．Terminals 非1，3，and 5 are identical to terminals 非2， 4 ，and 6 respectively．See Chart 2.1 ．

2．2．3 Program Output Impedance
The output transformers are normally connected to match a 600 ohm line．Impedance may be changed to 150 ohms by removing the jumper from terminals 非6 and 7，and adding one jumper between terminals非5 and 6，and another jumper between terminals 非7 and 8 of the transformer mounting card．The right program transformer，T3， when used，can be changed by following these same directions．

2．2．4 Record Amp1ifier，Program Input
Connect a two conductor shielded cable between the desired audio
input，（Monophonic or left Stereo channe1）to terminals 非3 and 5 of P3，with the shield connected to terminal 非1．For Stereo installations connect the right channel audio to terminals 非 and 6 of P3，and the shield to terminal 非1．See Chart 2.2 ．

2．2．5 Record Amplifier Input Impedance
The input transformers are normally connected to match a balanced 600 ohm line．Impedance may be changed to 150 ohms by moving a jumper on the input transformer board．Change the top end of the jumper（located closest to the transformers）into the vacant hole next to the transformer．To change to 20 k ohm bridging input，remove both jumpers for each transformer．See Fig． 2.1

INPUT TRANSFORMER BOARD
FIG． 2.1
2．2．6 Remote Control Connections
All control functions may be remote controlled．See Chart 2.1 and 2.2 for proper connections．

WARNING：The protective covers on the underside of the chassis are for your protection．

KEEP THEM IN PIACE

Connector J1

Terminal	Function
1	Ground
2-3	Tertiary Cue Switching
4-5	Secondary Cue Switching
6	Primary Cue Stop
7-8	Remote STOP
8-1	Remote START
9-11	Remote READY Indication
10-11	Remote RUN Indication
15	Positive 23 Volts
16	Cue Pre-Amp. Output

Connector J2

Termina	Function
1	Shield Ground
3-5	Monophonic, or Left Stereo Program Output
2	Shield Ground
4-6	Right Stereo Audio Output (if used)

PLAYBACK
EXTERNAL CONNECTIONS
CHART 2.1

Connector J2	
Terminal	Function
1	1 kHz Cue Inhibit
2	1 kHz Cue "Add"
3	Ground
4-6	Remote 150 Hz Cue Keying
5	Not Used
6-7	Remote 8 kHz Cue Keying
8	Not Used
9-10	Remote Record SET
11	Not Used
12	Remote SET Indication
Connector J3	
Terminal	Function
1-2	Shield Ground
3-5	Monophonic, or Left Stereo Audio Input
4-6	Right Stereo Audio Input

EXTERNAL CONNECTIONS - RECORD

3.1 Control Functions, Playback

a) Start-Run:

The START switch causes the run relay, K1, and the solenoid to be energized, and the tape set in motion. This switch is illuminated by an internal lamp when the tape is running. This lamp is brightened when the Secondary cue relay is activated.
b) Stop-Ready:

The STOP switch is used to manually stop the tape motion. This switch is illuminated by an internal lamp when a cartridge is properly inserted, and the unit is in the READY condition. This lamp is also illuminated when the Tertiary cue relay is activated.
c) Power Light:

The red power lamp operates from the DC power supply to verify that it is operational.
d) Program Gain:

Program gain controls are mounted on the PGM amplifier card, closest to the pull tab. The outermost potentiometers control high frequency equalization. Clockwise rotation increases High Frequency output.
e) Cue Sensitivity:

Cue Sensitivity controls are located on the cue card. When viewed from the front, left to right, the potentiometers control Primary, Tertiary and Secondary cue sensitivities. Clockwise rotation increases sensitivity.
3.2 Record Amp1ifier Control Functions
a) Gain Control:

The Recording Amplifier gain control, AT1, is used for adjusting the recording level as indicated by the VU meter, M1. Corresponding AT2 and M2 are for the Right channel on Stereo models.
b) Record SET:

The record SET pushbutton switch (SET) is used for placing the system in the recording mode.
c) 150 Hz Cue:

The Secondary cue pushbutton switch (SEC) is used for keying the 150 Hz tone generator.
d) 8 kHz Cue:

The Tertiary, or Auxilary, cue pushbutton switch (TER) is used for keying the 8000 Hz tone generator.
d) Press the START switch
recording immediately.
e) Upon completion of the recorded production, momentarily press the STOP switch only if more than one production is desired on the same cartridge.
f) When recording more than one production on a single tape cartridge, follow the procedure listed in Steps "c" through "e" for each recording. Upon completion of the final recorded production, allow the tape to continue running for several seconds, then push the STOP switch. Then press the START switch and allow the tape to run until it is stopped by the automatic cue tone.

The 1000 Hz Primary cue tone is recorded automatically at the beginning of the recording. If desired, the Secondary and Tertiary tones may be inserted after the message has been completely recorded. This permits monitoring and accurate placement of the tones.
Recording Procedure
The procedure for recording one or more productions is as follows:
a) Insert an erased tape cartridge into the right side of the cartridge slot in the playback unit. Note that the STOP indicator is illuminated, indicating the cartridge is properly placed. Press the START switch on the playback unit to presrun the cartridge for several seconds. This procedure will insure proper tape tension and travel.
b) Momentarily press the RECORD SET switch. The switch will be illuminated by the internal pilot lamp.
c) Adjust the INPUT control so the program level reads " 0 " on the VU meter, on program peaks.
d) Press the START switch on the playback unit and start

INTRODÜCTION

The Criterion Compact II adds recording capability to the "Compact" line of Gates Criterion tape cartridge equipment.

It is available in Record/Playback, or Playback only models, designed to handle NAB " A ", "B", and "C" size cartridges.

WARNING

Observe safety regulations. Always disconnect power before opening or servicing equipment. Always ground circuits before touching them.

WARNING: THE CURRENTS AND VOLTAGES IN THIS EQUIPMENT ARE DANGEROUS AND UNDER CERTAIN CONDITIONS, COULD BE FATAL。

This Manual is intended as general guidance for trained and qualified installation, operating, maintenance and service personnel who are familiar with and aware of the dangers inherent to handling potentially hazardous electrical and/or electronic circuits. It is not intended to contain a complete statement of all safety precautions which should be observed by personnel in using this or other electronic equipment.

THE INSTALLATION, OPERATION, MAINTENANCE AND SERVICING OF THIS EQUIPMENT INVOLVES RISKS TO BOTH PERSONNEL AND EQUIPMENT, AND MUST BE. PERFORMED ONLY BY PROPERLY TRAINED AND EXPERIENCED PERSONNEL EXERCISING DUE CARE. PERSONNEL MUST FAMILIARIZE THEMSELVES WITH SAFETY REQUIREMENTS, SAFE HANDLING AND OPERATING PRACTICE, AND RELATED FIRST-AID PROCEDURES (E.G., FOR ELECTRICAL BURNS AND ELECTRICAL SHOCK).

Gates shall not be responsible for injury or damage resulting from improper installation, operation, maintenance or servicing, or from the use of improperly trained or inexperienced personnel in the performance of such tasks, or from the failure of persons engaged in such tasks to exercise due care.

As with all electronic equipment, care should be taken to avoid electrical shock in all circuits where substantial currents or voltages may be present, either thru design or short circuit. Caution should also be observed in lifting and hoisting equipment, especially regarding large structures, during installation.

LIABILITY LIMITATION

The procedures outlined in this Manual are based on the information available at the time of publication and should permit the specified use with minimum risk. However, the manufacturer cannot assume liability with respect to technical application of the contents and shall, under no circumstances, be responsible for damage or injury (whether to person or property) resulting from its use.

The manufacturer is specifically not liable for any damage or injury arising out of failure to follow the instructions in this Manual or failure to exercise due care and caution during installation, operation, maintenance and service of this equipment.

CAUTIONARY NOTICE

Always disconnect power before opening covers, doors, enclosures, gates, panels or shields. Always use grounding sticks and short out high voltage points before servicing. Never make internal adjustments, perform maintenance or service when alone or when tired.

Never remove, short-circuit or tamper with interlock switches on access covers, doors, enclosures, gates, panels or shields. Keep away from live circuits, know your equipment and don't take chances. Proper training of experienced personnel and observing the above guidelines will help assure safe and continued operation of this equipment.
ii

Warning, disconnect primary power prior to servicing.
3.5 Recording Test Tapes For Equipment Checkout To facilitate easy head alignment checks, and for use as a timing standard, the following tapes should be recorded immediately upon receipt of the equipment-

1) Record one cartridge with 15 kHz at a record level of -10VU. Play the cartridge back, note and keep a log of the output level. This cartridge may be used for azimuth alignment and high frequency checks.
2) Record one cartridge at 700 Hz , at a record level of "0" VU, to serve as a reference level test cartridge.
3) Using a clean 3-1/2 minute cartridge, record a single 1000 Hz cue tone (Do not record program material on this tape). The tone is recorded automatically at the beginning of the recording process. Allow the machine to run until the tape cues. Re-run the tape, and log the exact time required for playback. This tape should be kept on hand as a timing standard.
3.6 Threshold Leve1 Test Cartridges

A valuable aid in maintenance of the cue system is a set of threshold level test cartridges. The cue sensors are factory set to trigger on tone 10 dB below the $N A B$ cue tone levels. Test cartridges with cue tones recorded at this level may be made as follows:

1) On the playback chassis, jumper J5-2 to J4-2, and J5-3 to J4-3. Remove the cue sensor card from the playback unit. The cue playback head is now in parallel with the Left Stereo, or Mono head section. Recorded cue tones will be reproduced on the Left, or Mono program output. Monitor this output, loaded with 600 ohms.
CAUTION: All output levels will read 6 dB lower than actual recorded level because the amplifier input is loaded with the two head sections.
2) Short capacitor C 8 on the tone oscillator card, and set the recorder. This disables the automatic timer and causes the 1 kHz oscillator to run continuously. While monitoring the output level, adjust R21 for a -15 dB level. Insert a clean cartridge and record a continuous cartridge at this leve1. Time the recording and stop the cartridge to prevent running past the starting point. Re-adjust the 1 kHz RECORD LEVEL to -6.4 dB output from the PGM amplifier, and remove the short from capacitor C8 on the tone oscillator card.
3) For a 150 Hz test cartridge, hold the SEC button down and

Warning, disconnect primary power prior to servicing.
adjust R2 for a -10 dB output leve1. Record a cartridge at this level. Then re-adjust the RECORD LEVEL to " 0 " dB output from the PGM amplifier.
4) For an 8 kHz test cartridge hold the TER button down and adjust R23 for -25 dB output level. Record a cartridge at this level. Then re-adjust the RECORD LEVEL to -15 dB output from the $P G M$ amplifier.
5) Remove jumpers from J4 and J5 on the playback unit.
6) Other brands of cueing systems may use different sensitivity or threshold level settings, and may not operate properly when set up with these test cartridges.
4.1 Playback Program Amplifier (Mono or Left Stereo Channe1) Transistors Q1 and Q2 are connected as a boot-strap amplifier for high DC stability. C3, R2 and R4 provide equalization, fixed for low frequencies of the NAB curve and adjustable at high frequencies, to compensate for head losses and allow the choice of operating curves to match $3-3 / 4,7-1 / 2$, or 15 IPS requirements. R1 and R4 provide local AC feedback for these stages to increase AC stability. Q3, Q4, Q5, and Q6 make up the complimentary symmetrical output amplifier, utilizing heavy feedback for stability.

The Right channel amplifier, when used, is identical to the Left.
The output transformer mounted on the rear of the chassis is normally connected for an output impedance of 600 ohms. 150 ohm output impedance is available by changing jumpers.
See Section 2.0.
4.2 Cue Sensor Card

The output of the cue head is amplified by integrated circuit Ul, squared by diodes CR1 and CR2, and applied to the three cue sensor circuits through the sensitivity control potentiometers.

The cue detector circuits are identical, with the exception of the frequency determining capacitors on the first two transistors of each. These circuits are tuned to provide necessary band width to respond to $N A B$ tolerance cue oscillator frequencies.

The primary cue sensor will drop the voltage on the high side of relay K1, to stop the Playback. The Secondary and Tertiary cue sensors activate their respective relays by completing a current path to ground.

A protect timer to prevent the primary cue sensor from responding to a cue signal present on start-up, is provided by the charging of C5 through R8 and R9. Q1 will be cut off until its base voltage rises with the charge on C5.
4.3 Record Program Amp1ifier

The input transformer (s) are mounted on a printed circuit board attached to the inside rear portion of the chassis. Normal connections are made to match a 600 ohm balanced line. 150 ohm and 20 k ohm bridging are available by changing jumper connections. See Section 2.0.

The integrated circuit U1 contains four amplifiers. Sections 1 and 4 are used to amplify and shape the incoming signal

Warning, disconnect primary power prior to servicing.
material to the $N A B$ record curve. The variable inductor circuit allows approximately 6 dB of high frequency adjustment to compensate for head and tape variations. Amplifier sections 2 and 3 are used as meter drivers. When the recorder is SET, the meters monitor the program material at the input of the amplifier card. During playback the meter driver input is switched by relay Kl to monitor the playback amplifier output. The playback signal must pass through the P / B meter calibrator first, then the RECORD LEVEL calibrator. Therefore, any change in the RECORD LEVEL calibrator will also change the P / B calibration.
4.3.1 Bias Oscillator

Transistor Q1 and Q2 operate as a push-pull oscillator, with T1 and C4 as a tuned load. The transformer output feeds trimmer capacitors C14, C15 and C16 to provide independent bias adjustments for each head section. Transistors Q3, Q4, and Q5 are saturated gates turned on (shunting bias to ground) in the playback mode, and off when recording. To achieve maximum attenuation of the bias and signal to the program tracks of the record head during playback, an LDR is located in series with each track. The LDR is turned on and off with Q4 and Q5 which acts as a high series resistance into an low shunt resistance (Q4 and Q5). The PGM inputs are brought into the bias card, passed through the bias traps to reduce the effects of high bias voltage on the program amplifier outputs. The cue bias gate is operated by voltage from the tone oscillator card whenever a tone is generated. The bias oscillator operates continuously whenever AC power is applied to the Record/Playback unit.
4.3.2 Tone Oscillator
$1 \mathrm{kHz}, 8 \mathrm{kHz}$ and 150 Hz tones are generated by three similiar type oscillator circuits on this card. $Q 5$ is a common amplifier for all tones, feeding through bias trap L4, C13, to the Record head. Power applied to any oscillator circuit is also applied to Q5 and out J6, terminal 7 (to operate the cue bias gate). The automatic 1 kHz cue tone is timed by the charging of capacitor C8, through R13. After the recorder is SET, and the START button is pressed, power is applied to J6, terminal 3, and to the 1 kHz oscillator through resistors R14, R11, and R10. When capacitor C8 is charged sufficiently, Q3 will be biased on, dropping the DC voltage across R14, and stopping the 1 kHz oscillator. The automatic cue tone may be prevented by grounding J2, terminal 1 by means of a remote switch, for a time period of a least one second, when starting a recording. A 1 kHz cue stop tone may be added at any time by momentarily grounding J2, terminal 2. This will discharge C 8 and start the timing cycle. It must be noted that the length of this added cue tone will be the normal automatic tone of $1 / 2$ to $3 / 4$ second, plus the time J2, terminal 2 is grounded.

Warning, disconnect primary power prior to servicing.
4.3.3 Control Circuits
Operation of the record SET button (or External Control) will
close relay K1, which will latch through contacts 非 and 12.
It will remain in latched position until a grounding pulse is
received through CR10 from the playback deck. The SEC (150 Hz)
and TER (8 kHz) cue buttons are paralleled by connecting
external controls to J2. Indicator lights may be connected
across external control switches, or the cue detector indicat-
ions from the playback may be used as verification of good
recorded cue tones.

5.	Adjustments and Cleaning, Playback
5.1.1	Heads- As with any quality tape equipment, frequent checks of head alignment, condition and cleanliness are imperative for maximum performance and trouble-free operation. Cleaning should be done with a soft dry cloth, or with cotton swabs moistened with isopropyl alcohol. Degauss the heads after cleaning. Care must be exercised to prevent scratching the head face with gauges or tools. During test tape checkout azimuth is peaked by loosening the lock-screw and turning screw "C". See Fig. 5.1. Tighten the lock-screw.
5.1 .2	Capstan and Pinch Roller The capstan shaft and pinch roller should be cleaned with a soft cloth or cotton swabs moistened with isopropyl alcohol. (Care must be exercised to prevent cleaning alcohol from running down the capstan shaft, into the motor bearings) $0 i l$ the pinch roller shaft with a drop of Gulf Harmony $44, \frac{\mathrm{C}}{}$ wipe off the excess. The motor bearings are life-time lubricated and need no special attention.
5.1.3	Solenoid The air-damped solenoid is controlled by a set-screw at the rear of the solenoid core. Tightening the screw will restrict the air flow, thereby slowing the solenoid action, and making for quieter operation.
5.1 .4	Pinch Roller Cross Shaft Occasionally lubricate the pinch roller cross shaft with Gulfway 52 \& lubricant. Alternately lay the Playback on each side and apply one drop of oil to each end of the cross shaft, at the lower side of the opening, allowing the oil to run down around the shaft. Wipe off the excess.
5.1 .5	Program Amplifier The program amplifier(s) are equalized to match the NAB reproduce curve. The level control(s) are located on the PGM card nearest the center pull tab. Routine checkout of the Playback with a test tape such as Gates FAL-1, should verify proper operation and allow one to make slight adjustments to compensate for head wear. The cue card may be removed to prevent the cue circuits from responding to the test tones, if a full track test tape is used.
5.1 .6	Cue Sensors The cue sensor sensitivity controls are factory pre-set to barely trigger, on tones recorded 10 dB below $N A B$ standard cue
	(3) Registered Trademark, Gu1f Oil Corporation, Pittsburgh, Pa.

tone levels．If cueing difficulties are encountered，a care－ ful check of heads，power supply voltage and recorded cue levels should be made before adjusting cue sensitivity levels．

Many cueing difficulties may be traced to head wear，or Mis－align－ ment．In case of cue problems a checkout of a test tape through a program channel may prove overall head condition．See Section 3．5．If the playback head appears to be good，the following procedure may be used as a sample analysis：

As an example consider a playback unit which fails to respond to the 8 kHz cue tone：
1）Insert the 8 kHz standard cue tape，as described in Section 3．6，into the machine．Determine if the unit is cueing with the standard tape．If it does not cue，check head alignment with the standard 15 kHz tape on a program channel．

2）Again insert the 8 kHz standard cue tape，and determine if the machine cues properly．Unless the heads are worn，or the cue sensitivity level is low，the Playback should now cue properly．

3）Check the output of $U 1$ on the cue sensor card by connecting an oscilloscope to capacitor $C 3$ ，located near the top left corner of the cue card．Running a blank cartridge，depress the SEC or TER button．The output should be a clipped sine wave of about 1.4 volts，peak to peak．The threshold tapes，as described in Section 3．6，should produce lower level sine waves，not clipped．

4）Ground the respective pin on the cue sensor card connector （J5 terminal 非10 for 8 kHz ，J5 terminal 非11 for 150 Hz ，or J5 terminal $⿰ ⿰ 三 丨 ⿰ 丨 三 八 9$ for 1 kHz ）to test the relay and wiring．

5）To troubleshoot the circuit，refer to voltage chart，Section 5．4．2．

5．2 Head Replacement
Remove head cover，cartridge spring and tape guide．Remove two screws holding the head clamp in place．Using long nose pliers， carefully remove pin clip leads from rear of head．Holding new head in same position，replace pin clip leads in the same order as removed．See Fig．5．2．Replace head clamp and tighten screws with front face of the head approximately 3－7／16 inches from front edge of front panel．This assures correct penetration of head into the cartridge when running．See Fig．5．7．

Replace tape guide and cartridge hold－down spring．The bottom of all three fingers of the tape guide should rest on the deck surface．

Refer to Fig. 5.3. Notice the tapered top and bottom surface of the small portion of gauge $\# 8150842001$. These tapered surfaces are $G 0 / \mathrm{NO}$ GO limits for the height of the tape guide openings. With the gauge resting on the deck surface, move the gauge from left to right in each of the three guide openings. Each guide opening should lie somewhere between the left and right hand vertical surfaces of the gauge.

5.2.1 Height Adjustment

Fig. 5.1 shows the location of mounting screws and adjustment points. The following steps outline proper adjustment procedures:

1) Turn the lock screw counter-clockwise until the screw is well above the lock position (maximum down).
2) Adjust screw " A " for $9 / 16$ inch height of the top of the upper track above the deck surface.
3) Adjust screw "B" for exact perpendicularity between the deck surface and pole faces. This may be done using a good quality machinist rule, $3 / 4$ or 1 inch wide, which is know to be square. Resting one edge of the rule on the deck surface, move the rule against the face of the head. At the point of perpendicularity, no space should be visible between the head and gauge, as the gauge is resting flat on the deck.
4) As an alternate method of height adjustment, a strip of clear mylar may be prepared by removing the lubricant and oxide from a short length of $1 / 4$ inch recording tape. Flux remover or shellac thinner will suffice to loosen the oxide (use in a well ventilated area to minimize danger from fire), so that it (oxide) may be wiped off the transparent mylar base.
5) Refer to Fig. 5.4. Position the mylar tape across the head faces and properly engage it in the tape guides. This represents the position of the tape when a cartridge is being played on the machine. In order to free one hand to make adjustments, fasten the mylar tape to the opposite side of the guide bracket from the head which is being adjusted. Proper tape postion in the tape guide is at the point where minimum distortion of the tape is observed. This distortion of the tape is due to the tape contacting the guide, and is visible as a slight crinkle at either the top or the bottom of the tape. With one hand hold the mylar in a position contacting the heads as shown.
6) While holding the mylar in this position, alternately adjust screws "A" and "B" (See Fig. 5.1) to position the tracks with respect to the tape. Screw "A" should be adjusted a small amount, then "B" shou1d be adjusted an equal amount in the
same direction. This procedure should be repeated until the correct height is obtained. Proper height is that at which the top of the upper pole piece is at the same level as the top of the tape, and the bottom of the lower pole piece is at the same level as the bottom of the tape.
7) Recheck perpendicularity (Step 非). On playback only machines dunmy heads are used in the record head position to provide a uniform tape path. Perpendicularity should be set on this head also.

This completes the height and perpendicularity adjustments. Remove the mylar strip. After adjustments are complete, the heads should be degaussed. (Remove AC power when degaussing heads)

5.2.2 Azimuth Adjustment

1) Insert a test tape, such as Gates FAL-1, or NAB test tape No.3, (Mono only) or 15 kHz tape. See Section 3.5.1.
2) While monitoring the output of the PGM amplifier, adjust screw "C" of the playback head for maximum output level. (See Fig. 5.1)

NOTE: Three peaks can be detected while making this adjustment. There is a minor peak 10 to 15 dB down on either side of the major peak. Adjust to major peak ONLY.
3) Tighten the lock screw for this head.
5.3 Deck Adjustments

This part of the manual is a guide for maintenance of those portions of the deck assembly which affect tape drive. If wow or flutter, or other tape drive problems are encountered, it should first be determined that cartridges are not at fault, before making any mechanical adjustments.

5.3.1 Cross Shaft Assembly

The pinch roller mounting shaft is mounted on the rotating cross shaft and, therefore, occupies a fixed position with respect to the cross shaft. Because of this, the motor capstan must be adjusted relative to this assembly.

If the pinch roller shaft is removed, it will be necessary to re-check the motor position to assure correct alignment. The cross shaft clamp prevents side-to-side motion of the cross
shaft, as we11 as holding the drive chain. If it is necessary to remove any of these parts, note their relative positions before loosening the screws. For quieter operation the cross shaft-to-deck bearing surfaces are factory lubricated with Gulfway 52 . This is a high viscousity oil, which may need to be replaced each 6 months to one year of operation.

5.3.2 Motor Position (See Fig. 5.7)

The position of the drive motor is adjustable my means of two mounting screws which are accessible from above the main deck structure. The motor assembly should be positioned to center the capstan on the pinch roller shaft and 3-5/8 inches from the front edge of the front panel. This can be set more precisely using Gates \#815 0842001 capstan adjustment gauge, or a similiar gauge made from information shown in Fig. 5.3. To use this gauge to position the motor accurately, this procedure should be followed:

1) Remove rubber pinch roller.
2) Loosen the two motor mounting screws.
3) Center the motor shaft on the pinch roller shaft, then grasp the gauge and both shafts tightly. See Fig. 5.5. This will keep both shafts paralle1 to each other and separated by the correct spacing (. 281 inch).
4) Tighten the motor mounting screws securely.
5) Now check to be sure both shafts touch the gauge, all along their entire lengths, this will indicate proper parallel positioning.
6) Replace the rubber pinch roller.

NOTE: Do not energize the solenoid with the rubber pinch roller off its shaft.

5.3.3 Solenoid Adjustment

The adjustment of the set-screw on the rear of the solenoid controls the escape of air, thus the effective damping. The position of the screw in the front of the solenoid determines the pinch roller pressure. The pinch roller shaft should come up to a distance of .281 inch, as measured between the top of the capstan shaft and the top of the pinch roller shaft, with solenoid engaged and motor running. Use of the 非15 0842001 gauge to make this pressure adjustment is shown in Fig. 5.6.

An alternate method of checking for correct pinch roller pressure adjustment is by observing the amount of indentation of the rubber pinch roller when in contact with the motor
capstan. There should be approximately $1 / 32$ inch indentation of the roller. If it is determined that solenoid adjustment is required, proceed as follows:

1) Loosen lock-nut using a thin $3 / 8$ inch open end wrench. (Hold solenoid plunger with $9 / 16$ inch open end wrench on hex side)
2) Clip or tie deck switch closed, then push START switch to energize solenoid. Turn screw into solenoid plunger for less pinch roller pressure, out for more pressure.
3) Tighten lock-nut. NOTE: The solenoid plunger should not "bottom out" in the end of the bore.
4) If the pinch roller should fail to return to its rest position, this is generally an indication of a weak spring. The spring should be replaced. Un-necessary removal of solenoid plunger from bore should be avoided. Do not exchange plungers between machines.
5.4 Operating Voltages - CC-II Playback

All DC voltages measured to ground with high impedance test meter. Allow for circuit loading when using 20 k ohm/per/volt V.O.M., or low impedance test meter.
5.4.1 Monophonic Program Amplifier (994 6801 001) Stereophonic Program Amplifier (994 6802 001)

Transistor	E	B	C
Q1,Q7	.03v	0.6 v	4.0 v
Q2, Q8	3.4 v	4.0 v	8.8 v
Q3,Q9	0.7 v	1.3 v	2.6 v
Q4, Q10.	2.0 v	2.6 v	11.0 v
Q5,Q11..	11.0 v	11.8 v	. 24.0 v
Q6, Q12	11.0 v	11.0 v 0

5.4.2 Cue Sensor (994 6826 001)

Warning, disconnect primary power prior to servicing.

Integrated Circuit (U1, LM301A)

Pin	No.	
1	$\ldots \ldots \ldots$	1.3 v
2	$\ldots \ldots \ldots$	12 v
3	$\ldots \ldots \ldots$	10 v
4	$\ldots \ldots \ldots$	0
5	$\ldots \ldots \ldots$	1.2 v
6	$\ldots \ldots \ldots$	4 to 14 v
7	$\ldots \ldots \ldots$	22 v
8	$\ldots \ldots \ldots$	13 v

5.4.3 Power Control Board (992 3111 001)

Terminal	Voltage
1 to 15.	155v
3 to 15	95 v
2 to Gnd	23v
4 to Gnd	14 v
5 not used	
6 not used	
7 to Gnd	23 v
8 to Gnd	20v
9 to Gnd	20 v
10 not used	
Il to Gnd	36v
12 to 13.	44 vAC
14 to 16	115 vAC
16 to 17,18	115 vAC

5.4.4 Q1 Voltage Regulator

E- 24 v , B- 25 v , C- 36 v
5.4.5 Record/Program Amp1ifier (994 6899 001)

INTEGRATED CIRCUIT U1

Pin Number	Voltage
1	7.4
2	Gnd
3	2.1
4	2.5
5	Gnd
6	7.4
7	2.2
8	2.6

Pin Number
................................. 2.6
10
2.2

11
12

$$
13
$$

$$
14
$$

$$
15
$$

$$
16
$$

NOTE: Signal Out, J4 Pin 6 and Pin 14 is approximately 0.6 VPP with M1, M2

 set on " 0 " at 700 Hz .5.4.6 Bias Oscillator (992 4582 001)

Transistor	E	B	C	T1 (Pins)
Q1	2.65	2.4	23.1	
Q2	2.65	2.4	23.1	1-2, 40VPP AC
Q3	3.1	2.6	3.0	2-3, 40VPP AC
Q4	0.0	0.7	0.0	4-6, 360VPP AC
Q5	0.0	0.7	0.0	
C7	10.5			
C8	10.5			

Q4, Q5: 24 VPP in RUN
Q3: 24 VPP when cue bias is "on".

5.4.7 Tone Oscillator (994 6898 001)

Transistor E B C
Q1 0.8 DC 1.2 VPP...1.3 DC 0.9 VPP...9.8 DC 6 VPP Q2 0.8 DC 1.1 VPP...1.1 DC 1.1 VPP...9.0 DC 5 VPP

5.5 Recording Amplifier Adjustment Controls
5.5.1 Record/Program Amplifier Alignment

When replacing record heads, it will be necessary to check the bias adjustment in order to maintain proper frequency response and output. Use the type of tape normally used since different types of tape require different bias levels for optimum performance. The following procedure should be used when bias adjustments are required:

1) Connect output of playback to console, or VU meter, with
proper input impedance. Connect an audio oscillator set at 700 Hz to the Record amplifier input.
2) Insert an erased cartridge into the Playback unit. Erase cartridge if unit cues out. Following steps are for Mono, or Left channel. Equivalent controls are shown in parenthesis for right stereo channel.
3) While recording at 700 Hz , with -10 dB output level, adjust the middle trimmer on the bias card, C15 (C16) for maximum playback level. Use a non-metallic screw driver for making all adjustments.
4) Change audio oscillator to 7000 Hz . If the output raises, increase bias level by turning control C15 (C16) clockwise, then switch the audio frequency input back and forth, first 700 Hz , then 7000 Hz , several times to check the output levels at the two frequencies. Adjust bias until the outputs are within 1.5 dB , or less, of each other.
5) Turn RECORD LEVEL control completely off. Connect an oscilloscope, or high impedance AC voltmeter to the negative end of C6 (C14) on the Record/Program amplifier, then adjust bias trap L2 (L1), on the bias card, for minimum reading.
6) Stt RECORD LEVEL control for -10 dB Playback output at 700 Hz . Change audio oscillator frequency to 15 kHz and adjust L1 (L2) on the Record/Program amplifier card for -10 dB output.
7) Set the RECORD LEVEL control for " 0 " dB output at 700 Hz . Adjust R1 (R19) on the PGM amplifier for " 0 " indication on the Left meter. Using this recording, or any other reference level test tape in the playback only mode, adjust R8 (R24) for " 0 " indication on the Left meter. If higher or lower playback levels are desired, the meters may be adjusted accordingly. The meter's playback calibration may be changed without affecting the record calibration, but changing the record calibration will seriously affect the playback calibration.
8) Repeat the above procedure for the Right channel for Stereo machines.
9) Short out C8 on the tone oscillator card to cause the 1 kHz oscillator to operate continuously, jumper the cue head output into the Left PGM amplifier as done in Section 3.6.1
10) SET and START the recorder. Adjust C14 on the bias card, for maximum output on the PGM channe 1.
5.5.2 Cue Record Level Adjustment

The cue record levels are adjustable by potentiometers mounted
on the tone oscillator card. So long as replacement heads are of the same type as the original, no change in cue recording levels should be necessary. Proper adjustment of the level controls should provide recovery levels from the Playback output as follows:

$$
\begin{aligned}
& \text { NAB Reference } 400 \mathrm{~Hz} \text {....... } 0 \mathrm{dBm} \text { (Ref) } \\
& \text { Primary (} 1 \mathrm{kHz} \text {) }-6.4 \mathrm{dBm} \\
& \text { Secondary (} 150 \mathrm{~Hz} \text {) +0.1 dBm } \\
& \text { Tertiary (} 8 \mathrm{kHz} \text {) }-15.4 \mathrm{dBm}
\end{aligned}
$$

5.5.3 Cue Frequency

The cue frequencies are adjustable by means of the slug-tuned coils on the cue oscillator card. Adjustment of these coils has been made at the factory. Re-adjustment of coils in the field should be attempted only if proper equipment is available for accurately checking the oscillator frequencies.

HEAD ADJUSTMENTS
FIG. 5.1

HEAD WIRING
(REAR VIEW)
FIG. 5.2

HEAD/GUIDE HEIGHT GAUGE
FIG. 5.3

HEAD ASSEMBLY, TAPE GUIDE
FIG. 5.4

CAPSTAN ADJUSTMENT GAUGE
LARGER PORTION OF GAUGE 8150842001
FIG. 5.5

PINCH ROLLER ADJUSTMENT GAUGE LARGER PORTION OF GAUGE 8150842001

FIG. 5.6

$B=5 \cdot 16^{\prime \prime}, \pm 132^{\prime \prime}$ MAXImUM, MOVE L AND L
$D=7.8^{\prime \prime}$ TARGET SETTING, MOVE R
$E=1-9,16^{\prime \prime}$ TARGET SETTING
$F=0^{11}$ TO $332^{\prime \prime}$ maximum. MOVE Q
$G=9.32^{\prime \prime}\left(0.281^{\prime \prime}\right)$ TARGET SETTING, MOVE 0
$K=1,64^{\prime \prime}$ MINIMUM (REJECT CARTS WITH LESS)
$\mathrm{L}=$ TAPE HEADS
$m=$ TAPE GUIDE CENTER POST
$N=$ RIGHT TAPE GUIDE
$P=$ PINCH ROLLER SHAFT
Q = MOTOR CAPSTAN
R = CARTRIDGE GUIDE

CRITERION COMPACT AND CC-II, CC-III TAPE DECK DIMENSIONS

FIG. 5.7

SECTION 6.0 - PARTS LIST

CC-II
MONO PROGRAM AMPLIFIER 9946801001 STEREO PROGRAM AMPLIFIER 9946802001

NOTE: MONO-Use only Left Channel Parts-Refer to Schematic

SYMBOL	DESCRIPTION	GATES	PART	N No.	SYMBOL	DESCRIPTION	gate	S PART	T No.
C1	Cap. 1uF, 25v	522	0232	000	C19	Cap. .001uF	516	0055	000
						1 kV			
C2	Cap. $50 \mathrm{uF}, 12 \mathrm{v}$		0208	000					
C3	Cap. .015uF,	508	0210	000	C20, 21	Cap. $50 \mathrm{uF}, 12 \mathrm{v}$	522	0208	000
	$\begin{aligned} & .015 \mathrm{uF}, \\ & 100 \mathrm{v} \end{aligned}$				C22	Cap. .002, 1kV	516	0063	000
C4	$\begin{aligned} & \text { 100uF, } \\ & 25 \mathrm{v} \end{aligned}$	522	0246	000	C23	Cap. $50 \mathrm{uF}, 25 \mathrm{v}$	522	0244	000
C5	Cap. 10uF, 25 v	522	0239	000	C24	Cap. 470pF,	500	0908	000
C6	Cap. 10uF, 6v				C25, C26	Cap.	500	0761	000
C7	$\begin{aligned} & .001 \mathrm{uF}, \\ & 1 \mathrm{kV} \end{aligned}$	516	0055	000			380	0115	000
					thru	2N5088			
C8, 69	Cap. 50uF, 12v	522	0208	000	Q4				
C10	$\text { p. } \underset{1 \mathrm{kV}}{.002 \mathrm{uF},}$	516	0063	000	Q5	Transistor, RCA 40317	380	0050	000
C11	Cap. 50uF, 25v	522	0244	000	Q6	Transistor, RCA 40319	380	0044	000
C12	Cap. 470 pF ,	500	0908	000					
C13	Cap. 1uF, 25v	522	0232	000	$\begin{aligned} & \text { Q7 } \\ & \text { thru } \\ & \text { Q10 } \end{aligned}$	Transistor, RCA 40397 or 2N5088	380	0115	000
C14	Cap. $50 \mathrm{uF}, 12 \mathrm{v}$	522	0208	000	Q11		380		
C15	Cap. . 015 uF ,			000		Transistor, RCA 40317		0050	000
	100 v								
					Q12	Transistor,	380	0044	000
C16	$\text { Cap. } \begin{aligned} & 100 \mathrm{uF}, \\ & 25 \mathrm{v} \end{aligned}$	522	0246	000		RCA 40319			
C17	Cap. 10uF, 25v	522	0239	000	R1	$\begin{aligned} & \text { Res. } 100 \text { ohm, } \\ & 1 / 2 \mathrm{~W}, 5 \% \end{aligned}$		0025	

SYMBOL	DESCRIPTION	GATES	PART	NO.	SYMBOL	DESCRIPTION	GATES	PART	N0
R2	Res. 1.8 k ohm, 1/2W, 5\%	540	0055	000	R19	Res. 33 ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0013	000
R3	Res. 100k ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0097	000	R20		550	0272	000
R4	Res. 200 ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0032	000	R21	$\begin{aligned} & \text { Res. } 100 \text { ohm, } \\ & 1 / 2 \mathrm{~W}, 5 \% \end{aligned}$	540	0025	000
R5	Res. 2.2 k ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0057	000	R22		540	0055	000
R6	Res. 680 ohm, 1/2W, 5\%	540	0045	000	R23	Res. 100k ohm, 1/2W, 5\%	, 540	0097	000
R7	Res. 22 k ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0081	000	R24	Res. 200 ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0032	000
R8	Res. 2.2 k ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0057	000	R25	Res. 2.2k ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0057	000
R9	$\text { Pot. } \begin{aligned} & 10 \mathrm{k} \text { ohm, } \\ & 1 / 4 \mathrm{~W} \end{aligned}$	550	0272	000	R26	$\begin{aligned} & \text { Res. } 680 \text { ohm, } \\ & 1 / 2 W, 5 \% \end{aligned}$	540	0045	000
R10	Res. 6.8 k ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0069	000	R27	Res. 22k ohm 1/2W, 5\%	540	0081	000
R11	Res. 12k ohm, 1/2W, 5\%	540	0075	000	R28	Res. 2.2k ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0057	000
R12	Res. 120 ohm, 1/2W, 5%	540	0027	000	R29		550	0272	000
R13	Res. 2.4 k ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0058	000	R30	Res. 6.8 k ohm, 1/2W, 5\%	540	0069	000
R14	$\begin{aligned} & \text { Res. } 812 \mathrm{k} \text { ohm, } \\ & 1 / 2 \mathrm{~W}, 5 \% \end{aligned}$	540	0071	000	R31	Res. 12k ohm, 1/2W, 5\%	540	0075	000
R15	Res. 1.3k ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0052	000	R32	Res. 120 ohm, 1/2W, 5\%	540	0027	000
R16	Res. 100 ohm, 1/2W, 5\%	540	0025	000	R33	Res. 2.4 k ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0058	000
R17	Res. 200 ohm, 1/2W, 5\%	540	0032	000	R34	$\begin{aligned} & \text { Res. } 8.2 \mathrm{k} \text { ohm, } \\ & 1 / 2 \mathrm{~W}, 5 \% \end{aligned}$	540	0071	000
R18	Res. 120 ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0027	000	R35	Res. 1.3k ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0052	

Warning, disconnect primary power prior to servicing.

Program Amplifier, Cont'd.

CUE SENSOR BOARD
9946826002

[^0]Cue Sensor Board, Cont'd.

SYMBOL	DESCRIPTION G	GATES	PART	No.	SYMBOL	DESCRIPTION	GATES	PART	NO.	
C27	$\begin{gathered} \text { Cap. } \\ 35 \mathrm{v} \end{gathered}$	526	0341	000	R3	Res. 33k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0948	000	\checkmark
C28	Cap. 10uF, 20v	526	0343	000	R4	Res. 100 ohm, 1/4W, 5\%	540	0888	000	
C29	Cap. 10uF, 25v	522	0239	000	R5	Res. 1k ohm,	540	0912	000	
C30	Cap. 2uF, 25v Elect.	522	0233	000		1/4W, 5\%				
CR1, CR2	Diode, 1N462	384	0264	000	R6	Pot. 10 k ohm, 1/4W	550	0272	000	
CR3, CR4	Diode, 1N276	384	0267	000	R7	Res. 10k ohm, 1/4W, 5\%	540	0936	000	;
Q1,Q2	$\begin{aligned} & \text { Transistor, } \\ & \text { 2N3417 } \end{aligned}$	380	0111	000	R8	Res. 47 k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0952	000	।
Q3	$\begin{aligned} & \text { Transistor, } \\ & \text { 2N5087 } \end{aligned}$	380	0112	000	R9	Res. 4.7k ohm, 1/4W, 5\%	540	0928	000	
Q4	$\begin{aligned} & \text { Transistor, } \\ & \text { MPS-U45 } \end{aligned}$	380	0179	000	R10	$\begin{aligned} & \text { Res. } 2.2 \mathrm{k} \text { ohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	540	0920	000	
Q5, Q6	$\begin{aligned} & \text { Transistor, } \\ & \text { 2N3417 } \end{aligned}$	380	0111	000	R11	Res. 10k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0936	000	T
Q7	$\begin{aligned} & \text { Transistor, } \\ & \text { 2N5087 } \end{aligned}$	380	0112	000	R12	Res. 27 k ohm, 1/4W, 5\%	540	0946	000	
Q8	$\begin{aligned} & \text { Transistor, } \\ & \text { RCA40314 } \end{aligned}$	380	0053	000	R13	Res. 4.7 k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0928	000	
Q9,Q10	$\begin{aligned} & \text { Transistor, } \\ & \text { 2N3417 } \end{aligned}$	380	0111	000	R14, R15	$\begin{aligned} & \text { Res. } 2.2 \mathrm{k} \text { ohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	540	0920	000	
Q11	$\begin{aligned} & \text { Transistor, } \\ & \text { 2N5087 } \end{aligned}$	380	0112	000	R16	Res. 3.3k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0924	000	
Q12	Transistor, RCA 40314	380	0053	000	R17	Res. 4.7 k ohm, 1/4W, 5\%	540	0928	000	
Q13	$\begin{aligned} & \text { Transistor, } \\ & \text { 2N4403 } \end{aligned}$	380	0126	000	R18	Res. 2.2k ohm,	540	0920	000	
R1	Res. 470 ohm,	540	0904	000		1/4W, 5\%				
$\mathrm{R} 2^{*}$	Res. (Selected)				R19	Res. 1k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0912	000	

Cue Sensor Board, Cont'd.

| SYMBOL | DESCRIPTION | GATES PART NO. | SYMBOL | DESCRIPTION | GATES PART NO. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R20 | Pot.10 k ohm,
 $1 / 4 \mathrm{~W}$ | 5500272000 | R 37 | Res. 4.7 k ohm, 5400928000 | |
| | | | | $1 / 4 \mathrm{~W}, 5 \%$ | |

R21 Res. 10k ohm, 5400936000
$1 / 4 \mathrm{~W}, 5 \%$
R38 Res. 2.2k ohm, 5400920000 $1 / 4 \mathrm{~W}, 5 \%$

R39 Res. 10k ohm, 5400936000 1/4W, 5\%

R40 Res. 27k ohm, 5400946000 $1 / 4 \mathrm{~W} .5 \%$

R41 Res. 4.7k ohm, 5400928000 $1 / 4 \mathrm{~W}, 5 \%$

R42,R43 Res. 2.2k ohm, 5400920000 $1 / 4 \mathrm{~W}, 5 \%$

R44 Res. 3.3k ohm, 5400924000 $1 / 4 \mathrm{~W}, 5 \%$

R45 Res. 4.7k ohm, 5400928000 $1 / 4 \mathrm{~W}, 5 \%$

R46

R47

R48

R49,R50 Res. 10k ohm, 5400936000 $1 / 4 \mathrm{~W}, 5 \%$

R51,R52 Res. 750k ohm, 5400981000 $1 / 4 \mathrm{~W}, 5 \%$

R53

UI
1
Res. 1k ohm, 5400912000 $1 / 4 \mathrm{~W}, 5 \%$

IC (Amplifier) 3820056000 National LM301A

* R2 is selected to cause the DC voltage reading of U1, Pin 6, to be 4 to 14 volts with no signal applied. The lower end of the voltage range is preferred

REFER TO DWG. NO. 8389902001

Warning, disconnect primary power prior to servicing.

EXPLODED VIEW CRITERION COMPACT

Warning, disconnect primary power prior to servicing.

SYMBOL	DESCRIPTION GA	gates	PART	No.	SYMBOL	DESCRIPTION	GATES	PART	NO.
C1	Cap. 5uF, 25v	522	0236	000	C20	Cap. 5uF, 25v	522	0236	000
C2	$\begin{aligned} & \text { Cap. .003uF } \\ & \text { Disc } \end{aligned}$	516	0067	000	C21, 222	Cap. 5uF, 25v	522	0236	000
			0050	000	C23, 24	Cap. 47pf, 500v	v 500	0817	000
c3	Cap. 1uF, 35v				C25, C26	Cap. 27pF, 500v	v 500	0811	000
C4	Cap, 100uF, 3v	522	0160	000					
C5	$\begin{gathered} \text { Cap. .0068uF, } \\ 100 \mathrm{v} \end{gathered}$	508	0191	000	CR1, CR2	Diode, 1N4246	384	0352	000
C6	Cap. 5uF, 25v	522	0236	000	$\begin{aligned} & \text { CR5 } \\ & \text { thru } \end{aligned}$	Diode, 1N4246	384	0352	000
C7	$\text { Cap. } \underset{25 \mathrm{v}}{100 \mathrm{~F},}$	522	0246	000	CR10				
C8	$\begin{array}{r} \text { Cap. } 47 \mathrm{pF}, \\ 500 \mathrm{v} \end{array}$	500	0817	000	L1, L2	Inductor, Var.	492	0363	000
C9	Cap. 35uF, 6v	522	0180	000	R1	Res. 10k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0936	000
C10	$\text { Cap. } \underset{25 \mathrm{v}}{100 \mathrm{~F},}$	522	0246	000	R2	Res, Trimmer, 10k ohm	550	0272	000
C11	Cap. 5uF, 25v	522	0236	000	R3	Res. 4.7 k ohm,	540	0928	000
C12	Cap. 35uF, 6v	522	0180	000		$1 / 4 \mathrm{~W}, 5 \%$			
C13	Cap. 5uF, 25v	522	0236	000	R4	Res. 2.2 k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0920	000
C14	Cap. 5uF, 25v	522	0236	000	R5	Res. 1.5 k ohm,	540	0916	000
C15	Cap. $47 \mathrm{uF}, 500 \mathrm{v}$	v 500	0817	000		1/4W, 5\%			
C16	$\text { Cap. } \underset{100 \mathrm{v}}{.0068 \mathrm{uF},}$	508	0191	000	R6	Not used			
C17	Cap. 100uF, 3v	522	0160	000	R7	Res. 100 ohm, 1/4W, 5\%	540	0888	000
C18	Cap. .5uF, 35v	526	0050	000	R8	Res. Trimmer, 100k ohm	550	0392	000
C19	$\begin{gathered} \text { Cap. .003uF, } \\ \text { Disc } \end{gathered}$	516	0067	000	R9	Res. 270 ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0898	000

Record/Program Amplifier, Cont'd.

SYMBOL	DESCRIPTION	GATES	PART	NO.	SYMBOL	DESCRIPTION	GATES	PART NO.
R10	$\begin{aligned} & \text { Res., } 1 \mathrm{k} \text { ohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	540	0912	000	R20	Res., 2.2 k ohm $1 / 4 \mathrm{~W}, 5 \%$	540	0920000
R11	$\begin{aligned} & \text { Res., } 13 \mathrm{k} \text { ohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	540	0939	000	R21	Res., 1.5 k ohm 1/4W, 5\%	540	0916000
$\begin{aligned} & \text { R12, } \\ & \text { R13 } \end{aligned}$	$\begin{aligned} & \text { Res., } 680 \text { ohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	540	0908	000	R22	Not used		
R14	Res., 4.7 k ohm 1/4W, 5\%	$\text { n } 540$	0928	000	R23	Res., 13k ohm, 1/4W, 5\%	540	0939000
R15	Res., 1 k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0912	000	R24	Res., Trimmer 100k ohm	550	0392000
R16	Res., 100 ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0888	000	$\begin{aligned} & \text { R25, } \\ & \text { R26 } \end{aligned}$	$\begin{aligned} & \text { Res., } 51 \text { ohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	540	0881000
R17	Res., 270 ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0898	000	U1	IC, CA3052	382	0120000
R18	Res., Trimmer, 10k ohm	540	0272	000	XU1	Socket, IC	404	0306000
R19	$\begin{aligned} & \text { Res., } 10 \mathrm{k} \text { ohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	540	0936	000				

BIAS OSCILLATOR MODULE

9924582001

Bias Oscillator Module, Cont'd.

SYMBOL	DESCRIPTION	GATES	PART	NO.	SYMBOL	DESCRIPTION G	GATES	PAR	NO.
$\begin{aligned} & \text { C11, } \\ & \text { C12 } \end{aligned}$	$\begin{aligned} & \text { Cap., } 47 \mathrm{pF}, \\ & 500 \mathrm{v} \end{aligned}$	500	0817	000	R6	$\begin{aligned} & \text { Res., } 22 \text { ohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	540		000
C13	$\begin{aligned} & \text { Cap., . } 01 \text { uF, } \\ & \text { 100v } \end{aligned}$	508	0215	000	R7	Res., 10k ohm, 1/4W, 5\%	540	0936	000
C14 thru C16	$\begin{aligned} & \text { Cap., Trimmer } \\ & 1.5-20 \mathrm{pF} \end{aligned}$	500	1200	000	R8	Res., 4.7k ohm 1/4W, 5\%	540	0928	000
C17	$\begin{aligned} & \text { Cap., } 15 \mathrm{uF}, \\ & 20 \mathrm{v} \end{aligned}$	526	0333	000	R9	Res., 24 k ohm 1/4W, 5\%	540	0945	000
$\begin{aligned} & \text { C18, } \\ & \text { C19 } \end{aligned}$	$\begin{aligned} & \text { Cap., } 240 \text { pF, } \\ & \text { Mica } \end{aligned}$	500	0830	000	R10	Res., 10k ohm 1/4W, 5\%	540	0936	000
					R11	$\begin{aligned} & \text { Res., } 24 \mathrm{k} \text { ohm, } \\ & \text { 1/4W, 5\% } \end{aligned}$	540	0945	000
CRI	Diode, 1N4246	384	0352	000	R12	Res., 10 k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0936	000
L1, L2	Inductor,	492	0363	000	R13	$\begin{aligned} & \text { Res., 10k ohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	540	0936	000
Q1, Q2	Transistor, 2N3053, NPN	380	0049	000	$\begin{aligned} & \text { R14, } \\ & \text { R15 } \end{aligned}$	$\begin{aligned} & \text { Res., 20k ohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	540	0943	000
Q3	Transistor, MPS4356, PNP	380	0508	000	$\begin{aligned} & \text { R16, } \\ & \text { R17 } \end{aligned}$	$\begin{aligned} & \text { Res., } 1 \text { Megohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	$, 540$	0984	000
Q4, Q5	Transistor, 2N5550	380	0158	000	$\begin{aligned} & \text { R18, } \\ & \text { R19 } \end{aligned}$	$\begin{aligned} & \text { Res., } 620 \text { ohm, } \\ & 1 / 2 \mathrm{~W}, 5 \% \end{aligned}$	540	0044	000
R1, R2	$\begin{aligned} & \text { Res., } 33 \text { ohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	540	0876	000	$\begin{aligned} & \text { R20, } \\ & \text { R21 } \end{aligned}$	Res., 2.2 k ohm 1/4W, 5\%	540	0920	000
R3	$\begin{aligned} & \text { Res., } 100 \text { ohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	540	0888	000	T1	Transformer, Bias Oscillator	r^{478}	0319	000
R4, R5	$\begin{aligned} & \text { Res., 10k ohm, } \\ & 1 / 4 \mathrm{~W}, 5 \% \end{aligned}$	540	0936	000					

6-10
Warning, disconnect primary power prior to servicing.

9946898001

SYMBOL	DESCRIPTION	GATES	PART	NO.	SYMBOL	DESCRIPTION	GATES	PART	N O .
R9	Res. 22 k ohm, 1/4W, 5\%	540	0944	000	R21	Potentiometer, 10k ohm	550	0272	000
R10	Res. 6.2 k ohm, 1/4W, 5\%	540	0931	000	R22	Res. 33 k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0948	000
R11	Res. 3.3 k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0924	000	R23	Potentiometer, 10k ohm	550	0272	000
R12	Res. 360 ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0901	000	R24	Res. 4.7 k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0928	000
R13	Res. 100 k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0960	000	R25	Res. 22k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0944	000
R14	Res. 1.8 k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0918	000	R26	Res. 220 ohm, $1 / 4 W, 5 \%$	540	0896	000
R15	Res. 2.2k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0920	000	R29	Res. 4.7 k ohm, 1/4W 5\%	540	0928	000
R16	Res. 1k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0912	000	R30	Res. 2.2 k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0920	000
R17	Res. 4.7 k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0928		R31	Res. 33k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0948	000
R18	Res. 22 k ohm, $1 / 4 \mathrm{~W}, 5 \%$	540	0944	000					
R19	Res. 3.6 k ohm, 1/4W, 5\%	540	0925						
R20	Not used								

RECORD AMPLIFIER

CHASSIS ASSEMBLY
9946894001

| SYMBOL | DESCRIPTION | GATES PART NO. | SYMBOL | DESCRIPTION | GATES PART NO. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AT1,AT2 | Potentiometer, 5500338000
 500 ohm, 2W | CR1
 thru
 CR4 | Diode, $1 N 4246$ | 3840352000 | |
| C1 | Cap. 25uF, 25v 5220242000 | | | | |

6-12

Warning, disconnect primary power prior to servicing.

Record Amplifier Chassis Assembly, Cont'd.

SYMBOL	DESCRIPTION	GATES	PART	NO.	SYMBOL	DESCRIPTION	GATES	PART	NO.
DS 1	Lamp (Rec.)	396	0169	000	R1	Res. 240 ohm, 1/2W, 5\%	540	0034	000
thru	\#\#387 (-B.)								
DS3									
					R2	Res. 100 ohm, 1/2W, 5%	540	0025	000
J1	Not used				R3, R4	Res. 200 ohm, $1 / 2 \mathrm{~W}, 5 \%$	540	0032	000
J2	Socket, 12 Conn.	612	0464	000					
J3	Socket, 6 Conn.	612	0461	000	$\begin{aligned} & \text { S1 } \\ & \text { thru } \\ & \text { S3 } \end{aligned}$	Switch, (Rec.)	604	0536	000
J4	Socket, 18 Conn.	612	0521						
J5, J6	Socket, PC Board, 12 Con		0490		T1, T2	Transformer, Input	478	0315	000
K1	Relay	574	0162	000	XK1	Socket, Relay	404	0253	000
M1,M2	$\begin{aligned} & \text { Meter, } \\ & 0-200 \text { micro-a } \end{aligned}$	${ }^{6 p}$	0699						

PLAYBACK CHASSIS ASSEMBLY
MONO - 9923305001
STEREO - 9923304001

SYMBOL	DESCRIPTION	GATES	PART	NO.	SYMBOL	DESCRIPTIO	GATES	PART	No.
C1, 22	$\begin{gathered} \text { Cap. .01uF, } \\ 600 \mathrm{v} \end{gathered}$	516	0080	000	C5	Cap. Motor 2.0uF for 50 Hz moto	510	0570	000
C3, C4	$\text { Cap. } \begin{aligned} & 1000 \mathrm{uF}, \\ & 50 \mathrm{v} \end{aligned}$	524	0159	000		Bracket fo Lower Plat	$\text { C5, } 815$	2760	001
C5	Cap. Motor, $1.5 \mathrm{uF}, 330 \mathrm{vac}$ for 60 Hz mot	510	0569	000		Bracket fo Top Clamp	$\mathrm{C} 5,815$	2578	

Playback Chassis Assembly, Cont'd.

SYMBOL	DESCRIPTION	GATES	PART	NO.	SYMBOL	DESCRIPTION	GATES	PART	NO.
C6	$\begin{gathered} \text { Cap, } 40 / 40 / 40 \mathrm{uF} \\ 350 \mathrm{v} \end{gathered}$	524	0221	000	K1	$\begin{aligned} & \text { Relay } 4 \mathrm{PDT}, \\ & 24 \mathrm{v} \end{aligned}$	574	0162	000
C7,8	Cap. .IuF,	506	0005	000	K2, K3	Optional			
C9	Cap. .1uF, 50v	526	0094	000	L1, L2	RF Choke, 2.2uHy	494	0227	000
C10	$\begin{aligned} & \text { Cap., } .5 \text { uf, } \\ & \text { 200v } \end{aligned}$	506	0007	000					
CR5	$\begin{aligned} & \text { Diode, RCA, } \\ & \text { IN3255 } \end{aligned}$	384	0263	000	P6	Nylon Plug Housing	610	0515	000
CR6 thru CR8	Diode, RGA, 1N3254	384	0258	000					
CR9	$\begin{aligned} & \text { Diode, Zener, } \\ & 25 \mathrm{v}, 2.5 \% \end{aligned}$	386	0176	000	Q1	Transistor, MJ4000	380	0187	000
DS 1 thru DS3	Lamp, 非387	396	0169	000	$\mathrm{R} 4, \mathrm{R} 5$ R 9	$\begin{array}{ll} \text { Res. } & 100 \text { ohm, } \\ 1 / 2 \mathrm{~W}, 5 \% \\ \text { Res. } & 10 \mathrm{k} \text { ohm, } \\ 3 \mathrm{~W}, 5 \% \end{array}$	540	10025	000 000
F1	Fuse, . 8 Amp Slo-blo	398	0053	000	R10,R11	$\begin{aligned} & \text { Res. } 82 \text { ohm, } \\ & 1 / 2 \mathrm{~W}, 5 \% \end{aligned}$	540	0023	000
F2	Fuse, 1/2 Amp	398	0049	000	R12	Res. 1.5 k ohm, 1/4W, 5\%	540	0916	000
J1	Socket, 18 Conductor	612	0466	000	S 1	Switch, Deck	604	0472	000
					S2,S3	Switch, N.O.	604	0536	000
J2	Socket, 6 Conductor	612	0461	000		Lens, Green, START	598	0211	000
J4, J5	Socket, P.C. Board	612	0490	000		$\begin{aligned} & \text { Lens, Yellow, } \\ & \text { STOP } \end{aligned}$	598	0212	000
J6	Nylon Cap Housing	612	0504	000					
					TI	Transformer,	472	0714	000

Playback Chassis Assembly, Cont'd.

| SYMBOL | DESCRIPTION | GATES PART NO. | SYMBOL | DESCRIPTION GATES PART NO. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T2,T3 | Transformer,
 Output | 4780316000 | -- | Head lead Ass'y 730
 OR/RED, Short | 1372000 |

POWER CONTROL BOARD

 9923111001
AUXILIARY AND OPTIONAL EQUIPMENT

SYMBOL	DESCRIPTION GATES PART NO.	SYMBOL	DESCRIPTION GATES PART NO.
--	Case, Deskmount 9385406001	--	Wing Head Screw 3581066000
--	Rack Mounting 9947067001 Kit, 7 inch rack panel	--	Extender Card, 9150347001 12 pin
RC-II T	Remote Control 9946913001 with 60 Hz Timer		
RC-II T	Remote Control 9946913002 with 50 Hz Timer		
RC-II	Remote Control 9946912001 without Timer, $50 / 60 \mathrm{~Hz}$		
--	Rubber Feet, 4240100000 Grey		
--	```Plug, 6 pin, 610 0482000 Latching. (Mates with J2-Playback, J3-Record Amp)```		
--	Plug 18 pin, 6100516000 Latching. (Mates with J1-Playback)		
--	Plug, 12 pin 6100484000 Latching. (Mates with J2-Record Amp)		

WARRANTY

Seller warronts nsw equipment monufactured by Harris Corforction, Gates Broadcoss Equipment Division against defects in material or workmanship at the time for delivery thereof, that develop under normal use within a period of one year is montins on moving parts) Fromi thie date of shipment, of which Purchaser gives Seller prompt written notice. Other manufacturers equipment, if any, including electron tubes, and towers shall cerry only such menufacurers' standard werranty.

Seller's sole responsibility for ariy breach of the foregoing provision of this contract, with respect to any equipment or paris not conforming to the warranty or the description herein contained, is at its option, (c) to repair or replace such equipment or parts upon the return thereof f.o.b. Seller's foctory within the pertod aforesaid, or (b) to accept the return thereof f.c.b. Purchaser's point of installation, whereupon Seller shall either (1) issue a credit to Purchaser's account hereunder in an amount equal to on equitable portion of the total contract price, without interest, or (2) if the total contract price has been paid, refund to Purchaser an equitoble portion thereof, without interest.

If the Equipment is described as used, it is sold as is and where is. If the contract covers equipment not owned by Seller at this date it is sold subject to Seller's acquisition of possession and titte.
Seller assumes no respansibility for design characteristics of special equipment manufactured to specifications supplied by or on behalf of Purchaser.

Seller shall not be licble for any expense whether for repairs, replacements, material, service or otherwise. incurred by Purchaser or modifications made by Purchaser to the Equipment without prior written consent of Seller.

EXCEPT AS SET FORTH HEREIN, AND EXCEPT AS TO THLE, THE只 ARE NO WARRANTIES, OR ANY AF. FIRMATIONS OF FACT OR PRCMIEES SY SELLER, WITH REFERENCE TO THE EQUIPMENT, OR TO AES. CHANTABILTY, INFRINGEMENT, GR OTHERWISE, WHICH EXTEND BEYOND THE DESCRPTION OF THE EQUIPMENT ON THE FACE HEREOF.

RETURNS AND EXCHANGES

Do not return any merchandise without our written approval and Return Authorization. We will provide special shipping instructions and a code number that will assure proper handing and prompt issuance oi credit. Please furnisin complete detoils os to circumstances and reasons when requesting return of merciondise. Custom built equipment or merchandise specially ordered for you is not returnabie. Where return is of the reauest of, or for the convenience of the customer, a restocking fee of 15% will be chargea. All ieturned merchandise must be sent freight prepaid and properly insured by the customer. When writing to Harris Corparation, Gates Brocdcast Equipment Division about your order, it wiil be helpfui if you spesify the Harris/Gates Factory Order Number or Invoice Number.

WARRANTY ADJUSTMENTS

In the event of equipment failure curing the warrenty period, replacement or repair parts may be crovided in occordance with the provisions of the Harris/Gates Warranty. In most cases you will be reourca to refurn the defective mercinandise or part to Harris/Goies f.o.b. Quincy, illiriois for replacement or repcir. Cost of repair parts or replacement merchandise will be billed to your account at the time of shipment and compensating credit will be issued to offset the charge when the defective items are returned.

MODIFICATIONS

Harris/Gates reserves the right to modiry the design and specifications of the equipment shown in this monval without notice or to wihdraw any them from sale provided, however, that any modification shall not adversely affect the periormance of the equipment so modified.

DAMAGES AND RISK OF LOSS

Purchaser assumes ail responsibility for and risk of loss of, or domage to, the Equipment upon delivery at Seller's shipping parnt, notwithstonaing the fact that Seller may have selected the carrier.

In no event shall Seller be liade under any provision of this contract for lass of busiriess or of anticipeted profits by Purchoser, oullavs by Purchaser in onticipation of busmess, other incidental or consequen: at damoges on account of negligence.
Purchoser agrees to indemnify Seller agcinst all slaims, whether on account of negligence or otherwise. except those esserted by Selleis employes, arisirig out c? or resulting from the erection, operation or use of the Equipment.

WARRANTY

Seller warrents new equipment monufactured by Harris Corforction, Gates Broodcast Equipment Divisien against defects in material or workmanship at the time far delivery thereof, that develop under normol use within a period of one year is months on movirig parts) from the date of shipment, of which Purchaser gives Seller prompt wititen notice. Other manufacturers' equipment, if any, including electron fubes, and towers shall carry only such manufacurers' standard warranty.

Seller's sole responsibility for any breach of the foregoing provision of this contract, with respect to any equipment ar paris not conforming to the warranty or the description heren contained, is at its option, (c) to repair or reploce such equipment or parts upon the return thereof f.o.b. Seller's factory within the period aforesaid, or (b) to accept the rerurn thereof f.ab. Purchaser's point of installation, whereupon Seller shall either (1) issue a credit to Purchaser's account hereunder in on amount equal to an equitable portion of the totol contract price, without interest, or (2) if the totol contract price has been paid, refund to Purchaser an equitable portion thereof, without interest.

If the Equipment is described as used, it is sold as is and where is. If the controct covers equipment not owned by Seller at this date it is sold subject to Seller's acquisition of possession and title.

Seller assumes no responsibility for design characteristics of special equipment monufactured to specifications supplied by or on behalf of Purchaser.

Seller shall not be liable for any expense whether for repairs, replacements, moterial, service or otharwise, incurred by Purchoser or modifications made by Purchaser to the Equipment without prior written consent of Seller.

EXCEPT AS SET FORTH HEREIN, AND EXCEPT AS TO TITLE, THERE ARE NO WARRANTIES, OR ANY AF. FIRMATIONS OF FACT OR ERCMEES SY SELLER, WITH REFERENCE TO THE EQUIPMENT, ORTO MERChantabllity, infringement, or otherwise, which extend beyoind the description of ihe equipment on the face hereof.

RETURNS AND EXCHANGES

Do not return any merchandise without our written approval and Return Authorization. We will provide special shipping instructions and a code number that will assure proper hanciling and prompt issuance oi credit. Please furnish complete details as to circumstances and reasons when requesting return of mercion. dise. Custom built equipment or merchondise spectally ordered for you is not returnobie. Where return is of the reavest of, or for the convenience of the customer, a restocking fee of 15% will be charged. All isturned merchandise must be sent freight prepaid ond properly insured by the customer. When writing to Harris Corporatian, Gates Broodecst Equipment Division about your order, it wiil be helpful if you spesify the Harris/Gates Factary Order Number or Invoice Number.

WARRANTY ADJUSTMENTS

In the event of equipment failure during the warranty period, replacement or repair parts may be provided in accordance with the provisions of the Horris/Gates Warranty. In most cases you will be regured to return the defective mercinandise or part to Harris/Gaies f.o.b. Quincy, illiriois for replacement or repair. Cost of repair parts or replacement merchandise will be billed to your account at the time of shipment and compensating credit will be issued to offset the charge when ine defective items are returned.

MODIFICATIONS

Harris/Gates reserves the right to modify the design and specifications of the equipment shown in this manual without notice or to wihdraw any item from sale provided, however, that any modification shall not adversely offect the periormance of the equipment so modified.

DAMAGES AND RISK OF!OSS

Purchaser assumes all responsibility for and risk of loss of, or damage to, the Equipment upon delivery at Seller's shipping pont, notwithstanaing the fact that Seller may have selected the carrier.

In no event shall Seller be lizole under ony provision of this contract for loss of busiriess or of anticipated profits by Purchnser, oullavs by Purchaser in antripation of busmess. other incidental or consequentia! dameges on account of negligence.
Purchaser agrees to indemnify Seller agemst all claims, whether on account of negligance or otherwise. except those esserted by Seller's employces, orising out o! or resulting from the erection, operction or wse of the Equipment.

[^0]: Warning, disconnect primary power prior to servicing.

