TECHNICAL MANUAL

FOR

MODEL ASM-1

C-QUAM ${ }^{\circledR}$ AM STEREO

MODULATION MONITOR

DELTA ELECTRONICS

DELTA ELECTRONICS, INC.

TECHNICAL MANUAL FOR

MODEL ASM-1
C-QUAM ${ }^{\circledR}$ AM STEREO
MODULATION MONITOR

${ }^{\circledR}$ © - QUAM IS A REGISTERED TRADEMARK OF MOTOROLA, INC. DELTA C-QUAM SYSTEM EQUIPMENT IS MANUFACTURED UNDER LICENSE FROM MOTOROLA, INC.

ADDENDUM I
TO
TECHNICAL MANUAL
FOR
MODEL ASM-1 C-QUAM ${ }^{(3}$
AM STEREO MODULATION MONITOR

AI. 1 SCOPE
This addendum corrects the ASM-1 technical manual issued 24 February 1986 to accurately reflect the equipment configuration. Any manuals issued after 24 October 1986 will have the corrected pages already inserted into the manual text. For retrofitting of previous manuals, the corrected pages will be provided with this addendum to be inserted by the customer into the manual. Corrected pages are identified by an (AI) to the right of the document number in the lower left hand corner of the page.

AI. 2 CORRECTIONS
The technical manual has been corrected as summarized below:
Section 3 - Paragraphs 3.2.9 through 3.2.9.4: Revised electrical characteristics specifications.

Section 6 - Paragraph 6.4: Revised reference oscillator adjustment procedures.

Section 7 - Section 7.1: Replaced Section 7.7 with Sections 7.7 .1 and 7.7.2 on the list.

Section 7.3: Added Fl for 240 VAC operation and changed existing $F 1$ to Slo-Blo with note for 120 VAC operation.

Revised Section 7.4 "List of Material, AVC Assembly, Reference Designation A100, D33-328, Rev. G" to "List of Material, AVC Assembly, Reference Designation A100, D33-328, Rev. J".

Replaced Section 7.7 "List of Material, Frequency Converter Assembly, Reference Designation A700, D33-324, Rev. $M^{\prime \prime}$ with Sections 7.7.1, "List of Material, Frequency Converter Assembly, Synthesized, Reference Designation A700, D33-324-1 and D33-324-2, Rev. N" and 7.7.2, "List of Material, Frequency Converter Assembly, Non-Synthesized, Reference Designation A700, D33-324-3 and D33-324-4, Rev. N".

Section 7.10: Changed heading from "Rev. F" to "Rev. G".

Section 7.11: Changed heading from "Rev. E" to "Rev. F".

Section 8 - Added list of schematic diagrams.
Deleted Monitor Block Diagram and added Model ASM-1 C-QUAM AM Stereo Monitor Functional Block Diagram.

Revised AVC Assembly Schematic Diagram.
Revised Schematic Diagram, Pushbutton Switch Assembly, Left.

Revised Schematic Diagram, PushЂ̄utton Switch Assembly, Right.

Revised Schematic Diagram, Frequency Converter Assembly (Sheet 1 of 2) and renamed "Schematic Diagram, Frequency Converter Assembly, Synthesized".

Revised Schematic Diagram, Frequency Converter Assembly (Sheet 2 of 2) and renamed "Schematic Diagram, Frequency Converter Assembly, Non-Synthesized".

Revised Decoder II Assembly Schematic Diagram (Sheets 1 and 2) and renamed "Decoder II Assembly Schematic Diagram, (Delta)" and "Decoder II Assembly Schematic Diagram, (Motorola)".

Delta warrants to Purchaser that the product it delivers will be free of defects in materials and be of good quality and workmanship.

This warranty applies to the period of one year from the date of delivery except for component parts purchased from other sources and assembled in Delta's production. Such component parts bear only the warranty of the manufacturer thereof in effect at the time of shipment to Purchaser.

Delta will, at its own expense and, after written notice has been received and acknowledged by Delta, repair or replace any product which proves to be defective (according to the usage of the trade) during the above designated warranty period when such product is received by Delta at its Alexandria address with shipment oosts prepaid by Purchaser.

Delta will not be liable for consequential damages.
No other warranty is expressed or implied.

SAFETY EBCAUTIONS
This Manual is intended for se by trained d qualified operating or service personnel who are familis with handins potentially hazardous electrical/electronic circuits. It s not intende 0 contain a complete statement of safety precautions whic should be obse..ed.

Avoid risking electrical $s, 0 k$ in handly all circuits where substantial currents or voltages may epresent.

LI LITY
The information in this Ma .1 is based C ata availale at the time of publication. However, the mentacturer canr assume liability with respect to technical application the content and shall, under no circumstances, be responsible for orage or injur shether to person or property) resulting from use of the bject equipmer.

REPLAC ENT PARTS
To obtain service replacemer: or warranty itas, write or call Delta at the address shown on the cover. Dlease supply oduct Model ivumber and Serial Number and replacement part dentification ncluding Order Number and description). Shipping of repincements may b unduly delayed if the necessary information is not supplis. A complety List of Macerials is provided in this Manual.

EQUIPMENT D GED IN TRANSI:
The equipment should be unp: :ed and inspec: for damage WITHIN 15 DAYS after receipt. If concealed c :age is discove a, immediat:ly notify the carrier, confirming the not cation in w ing, and secure an inspection report. Report all short. es and damage Delta at the address shown on the cover.

Delta will file all claims $:$ loss and dar: $=$ on this equipment so long as the inspection report is obt: ned. Disposit. 0 of the daraged items will be determined by Delta.

FIELD ENG: ERING SERVICE
Requests for installation, Weld engineerin; or service assistance should be directed to Delta.CERTIFICATE OF WARRANTYii
CUSTOMER INFORMATION iiiINTRODUCTION1-1
1.1 Scope 1-1
1.2 What is C-QUAM 1-1
1.3 AM and RM Modulation 1-1
1.4 Generating C-QUAM 1-4
1.5 Decoding C-QUAM $1-6$
EOUIPMENT CHECKOUT AND INSTALLATION 2-1
2.1 Delivery Inspection 2-1
2.2 Equipment Damaged in Transit 2-1
2.3 Mechanical Checkout 2-1
2.4 Replacement Parts 2-1
2.5 Functional Checkout 2-1
2.6 Field Engineering Service 2-3
2.7 Installation 2-3
2.8 Day RF Sample Level 2-3
2.9 Night RF Sample Level 2-3
2.10 Operational Checkout 2-4
3 SPECIFICATIONS AND EQUIPMENT DESCRIPTION 3-1
3.1 Scope 3-1
3.2 Specifications 3-1
3.3 Front and Rear Panel Description 3-3
OPERATION AND PROOF OF PERFORMANCE 4-1
4.1 General 4-1
4.2 Monitor Features 4-1
4.3 L+R Indications 4-1
4.4 L-R Indications 4-1
4.5 Left Only Indications 4-2
4.6 Right Only Indications 4-2
4.7 Carrier Shift Measurement 4-2
4.8 Noise Level Measurements 4-2
4.9 Incidental Phase Modulation Measurements 4-3
4.10 Single Channel Separation Measurements 4-3
4.11 Pilot Tone Level and Frequency 4-3
5
THEORY OF OPERATION 5-1
5.1 General 5-1
5.2 Circuit Card Functions 5-1
5.3 Power Attenuator Assembly 5-2
5.4 Frequency Converter Assembly 5-2
5.5 Decoder Assembly 5-3
5.6 AVC Assembly 5-4
5.7 Meter Control Assembly 5-6
5.8 Power Supply Assembly 5-7
SECTION TITLE PAGE
σ MAINTENANCE 6-1
6.1 General 6-1
5.2 General Cleaning 6-1
6.3 Power Supply Check 6-1
6.4 Reference Oscillator Adjustment 5-2
6.5 Front Panel Meter Lamp Replacement 5-2
7 LIST OF MATERIALS 7-1
7.1 Introduction 7-1
7.2 ASM-1 System Components 7-2
7.3 ASM-1 Final Assembly 7-3
7.4 AVC Assembly 7-5
7.5 Meter Control Assembly 7-20
7.6 Decoder Assembly 7-30
7.7 Frequency Converter Assembly 7-46
7.8 Power Attenuator 7-53
7.9 Power Supply Assembly 7-54
7.10 Switch Panel Assembly, Left 7-56
7.11 Switch Panel Assembly, Right 7-57
7.12 Left and Right Thumbwheel 7-58
Switch Assembly
7.13 Decoder II Assembly 7-59SCHEMATIC DIAGRAMS8-1

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
1-1 Arplitude Modulation 1-21-2
1-3 CuAM Transmission Method 1-5Phase Modulation1-3
1-4 Deooding C-QUAM 1-7
Csmonent Locations, Top View 2-2
3-1\%ont Panel3-7ar Panel3-9
LIST OF TABLES
TABLE TITLE PAGE
3-1 Eront Panel Controls 3-4
3-2 Rear Panel Outputs 3-8

SECTION 1

INIRODUCTION

SCOPE
This Technical Manual describes the Model ASM-1, AM Stereo Modulation Monitor, manufactured by Delta Electronics, Inc. The ASM-1 monitors modulation using the C-QUAM method of AM stereo transmission.

1.2 WHAT IS C-QUAM?

C-QUAM is the Compatible Quadrature Amplitude Modulation method of stereo transmission by which a main ($L+R$) and a subchannel ($L-R$) signal are transmitted on a single carrier. This is accomplished by using two modulation modes to transmit the main and stereo information channels. Stereo receivers separate the signals to ultimately produce left and right channel audio while typical monophonic receivers detect only the L+R (mono) content of the C-QUAM signal. The most important feature of C-QUAM is that no compromises are made in the monophonic performance in order to transmit stereo. It is truly a compatible stereo transmission system.

1.3 AM AND PM MODULATION

To ensure a full understanding of C-QUAM, a quick presentation of modulation characteristics is in order.

Amplitude modulation is the process in which one signal's amplitude is varied by another signal. An oscilloscope display depicts the amplitude variation versus time of the AM signal. This is the familiar RF envelope display illustrated in Figure 1-1A. The AM signal can also be described in the frequency domain with an amplitude versus frequency plot. Figure 1-1B illustrates a typical spectrum analyzer display of an AM signal. The display reveals a carrier and two sidebands separated from the carrier by the modulating frequency. In AM, as the modulation is increased, the sidebands amplitudes increase but the average carrier level remains constant.

Phase modulation results in very different time and frequency domain plots. PM is generated by varying the phase of the carrier signal, and thus, its instantaneous frequency, while the amplitude remains constant. Figure 1-2A illustrates a PM signal RF envelope. The spectrum analyzer plot of a PM signal reveals sidebands spaced at multiples of the modulation frequency from the carrier. Since the amplitude of the PM signal is constant, the phasing of the sidebands is such that they add and subtract to produce a constant amplitude. Figure $1-2 B$ illustrates the PM signal spectrum plot.

FIGURE 1-1A
ENVELOPE

FIGURE 1-1B
SPECTRUM

FIGURE 1-2A
ENVETOPE

FIGURE 1-2B
SPECTRUM

FIGURE 1-2
PHASE MODULATION

Since the phase of the carrier is not affected by amplitude variations, a phase detector output is zero when an AM signal is input. Similarly, an envelope detector does not detect phase. variations of the PM signal; all the sidebands add and subtract according to their phasing to produce a constant amplitude RF signal. Thus, a phase modulated carrier can also be amplitude modulated producing a signal that carries two channels of information easily separated at the receiver. Most important is the fact that neither modulation mode affects the output of the other mode detector. This effect allows C-QUAM to be perfectly compatible with all AM receivers. C-QUAM transmits the L+R (mono) information with AM while the L-R (stereo) information is contained on the BM signal. The millions of existing envelope detector type radios now in use detect only the LTR AM signal, producing a clear undistorted mono audio signal that is completely unaffected by the L-R stereo subchannel information sent on the same carrier. Stereo decoders detect the LTR and L-R separately and dematrix them to produce left and right stereo audio.

1.4 GENERATING C-QUAM

The AM/PM method of stereo transmission discussed can be achieved by several methodologies. C-QUAM uses the L+R information to produce an in phase, I, AM signal while the L-R information is used to generate a quadrature (-900 phase shifted), Q, double sideband suppressed carrier (DSSC) signal. Summing the I and Q signals results in a signal that is both amplitude modulated and phase modulated. This quadrature amplitude modulated (QUAM) signal is not compatible with envelope detector receivers because the Q channel amplitude affects the amplitude of the sum of the I and Q channels. The QUAM signal is thus passed through a limiter to strip off the amplitude variations leaving only a phase modulated carrier. This phase modulated carrier generated from quadrature amplitude modulation replaces the carrier normally generated by the crystal oscillator in the broadcast transmitter. The I information ($L+R$) can then be used to amplitude modulate the phase modulated carrier in the broadcast transmitter as is done in conventional AM. The output of the transmitter is thus the C-QUAM signal.

Figure 1-3 illustrates the C-QUAM transmission methodology. The block diagram of Figure 1-3A shows how the I and Q signals are derived and summed to produce the QUAM signal. The vector diagram of Figure l-3B shows the QUAM signal as the vector sum of the I and Q signals with a corresponding phase shift. After bandpass filtering and limiting, a constant amplitude phase modulated carrier remains as shown in Figure l-3C. Finally, this carrier is fed to the transmitter where it is modulated by main channel audio to produce C-QUAM as shown in Figure 1-3D. Note that the amplitude of the C-QUAM signal is exactly the same as an AM signal for complete compatability.

Decoding C-QUAM signals is substantially the reverse of the encoding process. Referring to Figure 1-4A, note that the C-QUAM signal passes through a variable gain amplifier and is fed to a Q (quadrature) detector. The long term average output of the Q detector (DC component) is zero. Any variation from zero of the $D C$ component will appear at the output of the loop filter and cause the VCO to correct phase to eliminate the variation. Thus the VCO is phase locked to the average carrier phase, zero degrees. The VCO signal is used to drive an in phase synchronous (I) detector which decodes the zero degree vector component of the amplified $C-Q U A M$ signal. Similarly, a ninety degree phase shifted VCO signal drives a quadrature phase synchronous (Q) detector which decodes the quadrature (-900) vector component of the amplified C-QUAM signal.

The length of the $C-Q U A M$ vector of Figure $1-4 B$ appears at the output of the envelope detector. It is apparent from Figure 1-4B that by appropriately amplifying the C-QUAM vector, the in phase (I detector) component can be made equal in magnitude to the magnitude of the C-QUAM vector. This is the function of the comparator which adjusts the variable gain amplifier to restore a QUAM signal for the I and Q detectors. Note that Figure 1-4B now becomes the same diagram as Figure $1-3 B$ and that the outputs of the I and Q detectors are the desired $I+L+R$ and $L-R$ signals.

EQUIPMENT' CHECKOUT AND INSTALLATION

2.1 DELIVERY INSPECTION

The shipping cartons for the Monitor are designed to protect the equipment for normal handling during shipment. Unpack and thoroughly inspect the equipment for any evidence of mishandling. Report damage to the carrier immediately. Identify all deliverable items including card extender and Technical Manusi. Check for mechanical integrity of the unit and overall outer appearance.

2.2 EQUIPMENT [MAGED IN TRANSIT

The equipment should be unpacked and inspected for damage WITHIN 15 DAYS after receipt. If concealed damage is discovered, immediately notify the carrier, confrming the notification in writing, and secure an inspection report. Report all shortages and damages to Delta.

Delta will file all claims for loss and damage on this equipment so long as the inspection report is obtained. Disposition of the damaged items will be furnished by Delta.

2.3 MECHANICAL CHECKOUT

CAUTION

Complete the below procedure before applying power to the unit.
Remove top panel screws from the Monitor and check that all circuit cards are properly seated in their sockets. Cards may be reseated by operating the cam levers to open each card socket and firmly pressing down on the card edge while closing the socket using the cam lever. Normal card complement and placement are shown in Figure 2-1. Secure the top cover.

2.4 REPLACEMENT PARTS

To obtain service replacement or warranty items, write or call Delta. Please supply product identification (Model Number and Serial Number) and replacement part identification (including Stock Number and Description). Shipping of replacements may be unduly delayed if the necessary information is not supplied. A complete List of Materials is provided in this Technical Manual.

2.5 FUNCTIONAL CHECKOUT

Plug the unit line cord into a suitable AC outlet. Verify meter functions and indicator light functions.

Unplug unit before proceeding.

There is no power switch for the Monitor. Therefore, unplug the line cords to turn the unit off.

2.6

FIELD ENGINEERING SERVICE
Requests for installation, field engineering or service assistance should be directed to Delta.

2.7 INSTALIATION

The installation of the AM Stereo Modulation Monitor, Model ASM-1, is a very straight-forward operation.

After completing the equipment checkout as outlined in Section 2.3, install and secure the unit in a standard 19" rack avoiding areas of excessive heat. Apply power.

CAUTION
Before connecting the transmitter's RF sample to the Monitor, ensure the sample level is between 1 to 10 Vrms ($28 \mathrm{Vp}-\mathrm{p}$ maximum) into a 50 ohm load at $100 \% \mathrm{AM}$. Serious damage will result if this level is exceeded.
2.8 DAY RF SAMPLE LEVEL

Before connecting the RF sample to the unit, turn the RF Attenuator on the rear panel to maximum attenuation (fully counterclockwise while facing the rear panel). Turn the CARRIER SET pot on the front panel fully counterclockwise (maximum attenuation). Set the PILOT/CARRIER switch on the front panel to the CARRIER position.

Remove the 50 ohm load from the transmitter's carrier sample and connect the carrier sample to the RF input (J13) on the rear panel.

Adjust the CARRIER SET pot on the front panel to approximately the center of its range. Decrease the step attenuator on the rear panel one step (10 dB) at a time until a carrier indication is seen on the carrier meter. Again adjust the CARRIER SET pot to fine tune the carrier level so that the meter's display rests in the center at the SET position. The Monitor is now ready for operation.
2.9 NIGHT RF SAMPLE LEVEL

If transmitter power levels and/or patterns change, ensure RF sample levels from the transmitter remain constant for each power or pattern change.

Modulate the transmitter with either tones or program material and watch the modulation meters on the Monitor. Ensure the Monitor's modulation indications are correct beyond a reasonable doubt. To verify correct indications, view the RF sample going to the lonitor on a scope; in the envelope pattern, modulation levels can be confirmed.

SECTION 3

SPECIFICATIONS AND EQUIPMENT DESCRIPTION
3.1 SCOPE

This section describes the Model ASM-1 AM Stereo Modulition Monitor specifications and details front and rear panel descriptions and functions.

3.2 SPECIFICATIONS

3.2.1 RF Input

RF Sensitivity
Input Impedence
Input Attenuation
Connector

1-10 Vrms
50 Ohms
$0-50 \mathrm{~dB}$ in 10 dB steps BNC
3.2.2 Rear Panel Detector Outputs

Envelope Detector (J5)
L-R Detector (J7)
I Detector (J8)
Pilot (J6)
Connectors
$2 \mathrm{~V} p-\mathrm{p}$ at $100 \% \mathrm{AM}$
2 V p-p at $100 \% \mathrm{PM}$
2 V p-p at single channel, 50% 25 Hz at 2.5 Vrms BNC

3.2.3 Rear Panel Audio Outputs

Balanced (TBI):	
Left	$\begin{aligned} & 0 \text { dBM into } 600 @ \text { L+R }= \\ & 100 \% \end{aligned}$
Right	$\begin{aligned} & 0 \text { dBM intc } 600 @ L+R= \\ & 100 \% \end{aligned}$
Connector	Terminal Block
Unbalanced:	
L+R	1.5 Vrms á 100\% LHR
L-R	1.5 Vrms aこ 100\% L-R
Left	1 V RMS at 50% Left Only
Right	IV RMS at 50% Right Only
Connectors	BNC

3.2.4 Remote Flasher and Meter Outputs

L+R Flasher (J1)
L-R Flasher (J3)
LtR Meter (J2)
L-R Meter (J4)
Connectors
+13 VDC Triggered
+13 VDC Triggered
$+0.45 \mathrm{VDC} \mathrm{a}=100 \% \mathrm{~L}+\mathrm{R}$ 60 Ohm Source
+0.45 VDC at 100% L-R 60 Ohm Source
BNC

3.2.5 Front Panel Meters

3.2.5.1 Modulation Meters

Positive Range	0 to 140%
Negative Range	0 to 100%
Attenuation Range	0 to -50 dB
Measuring Functions	$+\mathrm{L}+\mathrm{R},-\mathrm{L}+\mathrm{R},+\mathrm{L},-\mathrm{L}$,
	$+\mathrm{L},-\mathrm{L}, \mathrm{R}, \mathrm{R},-\mathrm{R}$
Meter Scales	of Modulation and dB
	Levels
dB Scale Range	+3 to -20 dB
Meter Size	$3^{\prime \prime} \mathrm{H} \mathrm{X} \mathrm{4.5"W}$

3.2.5.2 Carrier/Pilot Meter

Carrier Scale Range Carrier Shift Indication
Pilot Level
Meter Functions
Meter Size
3.2.6 Peak Flashers
$+/-\mathrm{L}$ or $+/-\mathrm{L}+\mathrm{R}$
+/- R or +/-L-R

3.2.7 Flashers

$-100 \% \mathrm{~L}+\mathrm{R}$
+125\% L+R
L-R 100\% (L-R Limit)
High Angle (L-R Neg Limit)
Pilot Tone Indicator
3.2.8 Physical Characteristics

Front Panel
Unit Dimensions
Unit Weight
Operating Temperature

0 to 140\%
0 to 100\%
0 to -50 dB
$+\mathrm{L}+\mathrm{R},-\mathrm{L}+\mathrm{R},+\mathrm{L},-\mathrm{L}$, $+L-R,-L-R,+R,-R$
\% of Modulation and dB Levels
+3 to -20 dB
$3^{\prime \prime}$ H X 4.5" W
-20% to $+20 \%$
Direct Reading
Direct Reading
Swi tchable
0.7" H X 2.6" L

1\% to 199\% Programable Thumbwheel Controlled 1\% to 199\% Programable Thumbwheel Controlled

LED Indicator Fixed Calibration
LED Indicator Fixed Calibration
LED Indication Fixed Calibration
LED Indication Fixed Calibration
LED Indicator Fixed Calibration

19" Rack Mount
19" W X 5.25 H X 14.7" D
24 lbs.
00 C to 500 C

3.2.9 Electrical Characteristics

Intemediate Frequency (IF)
Residual Noise L+R
Residual Noise L-R
3.2.9.1 Distortion vs. Frequency
$\underline{L+R}$
95%, 50 Hz to 15 KHz
L-R
$100 \%, 50 \mathrm{~Hz}$ to 15 KHz
3.2.9.2 Response vs. Frequency
95%; L+R, 50 Hz to 15 KHz
100%; L-R, 50 Hz to 7.5 KHz
100%; L-R, 7.5 K to 15 KHz
75%; L or $\mathrm{R}, 50 \mathrm{~Hz}$ to 7.5 KHz
75%; L or $\mathrm{R}, 7.5 \mathrm{kHz}$ to 15 KHz
3.2.9.3 Separation vs. Frequency
50%, L or R only, 50 Hz to $1 \mathrm{kHz} \quad 45 \mathrm{~dB}$
50%, L or R only, 1 KHz to $5 \mathrm{kHz} \quad 40 \mathrm{~dB}$
50%, L or R only, 5 kHz to $15 \mathrm{KHz} \quad 35 \mathrm{~dB}$
75% L or R only, 50 Hz to $5 \mathrm{kHz} \quad 35 \mathrm{~dB}$
75%, L or R only, 5 kHz to $15 \mathrm{KHz} \quad 30 \mathrm{~dB}$
3.2.9.4 Crosstalk vs. Frequency

$95 \%, \mathrm{~L}+\mathrm{R}, 50 \mathrm{~Hz}$ to 5 KHz	45 dB
$95 \%, \mathrm{~L}+\mathrm{R}, 5 \mathrm{KHz}$ to 15 KHz	40 dB
$100 \%, \mathrm{~L}-\mathrm{R}, 50 \mathrm{~Hz}$ to 1 KHz	50 dB
$100 \%, \mathrm{~L}, \mathrm{R}, 1 \mathrm{KHz}$ to 5 KHz	45 dB
$100 \%, \mathrm{~L}, 5 \mathrm{RHz}$ to 15 KHz	35 dB

3.2.10 Power Requirements Line Frequency Power

3.2.10

Line Voltage

450 KHz
-65 dB (referenced to $100 \% \mathrm{~L}+\mathrm{R}$)
-55 dB (referenced to $100 \% \mathrm{~L}-\mathrm{R}$)
$\leq 0.5 \%$
$\leq 1 \%$
$<+0.1 \mathrm{~dB}$
$<\mp 0.1 \mathrm{~dB}$
$<\mp 0.5 \mathrm{~dB}$
$<$ +0.1 dB
$<\overline{+0.5 d B}$

115 or 240 VaC $50 / 60 \mathrm{~Hz}$ 61 Watts
3.3 FRONT AND REAR PANEL DESCRIPTION

In the following tables, the front panel controls and rear panel outputs are described.

FRORT PANEL CONTROLS

DESCRIPTION
Large Front Panel Meters

Left Meter Attenuation Range Setting Switches

Right Meter Attenuation Range Setting Switches

Left Meter Modulation Function Switches

Right Meter Modulation Function Switches

Left Programmable Peak Flasher

Left Thumbwheel Switch

FUNCTION

These meters indicate modulation levels as selected by S 801 and 5802 .

These switches select appropriate attenuation levels in 10 dB steps for the left-hand modulation meter

These switches located directly below the right-hand modulation meter and selects appropriate attenuation levels in 10 dB steps for the meter

These four switches select what the left meter displays: $\ddagger+\mathrm{R},-\mathrm{L}+\mathrm{R}$, +L or -L. They also control the left peak flasher's operation (DS803) as to what they will trigger on.

These four switches select what the right meter displays: $+\mathrm{L}-\mathrm{R},-\mathrm{L}-\mathrm{R}, \mathrm{tR}$ or -R. They also control the right peak flasher's operation (DS804) as to what they will trigger on.

The Left peak flasher modulation range is set via the left-hand thumbwheel switch. Its function depends upon the modulation switch setting of S801A.

This switch controls the level of modulation for which the Left flasher, DS803, fires.

TABLE 3-1

MODEL ASM-1 AM STEREO MODULATION MCNITOR
FRONT PANEL CONTROLS
(CONTINUED)

DESCRIPTION
L+R +125\% Flasher

L+R -100\% Flasher

Right Peak Flasher

Right Thumbwheel Switch

L-R Limit Flasher (100% L-R)

L-R Negative Limit Flasher
(high angle)

TABLE 3-1

MODEL ASM-1 AM STEREO MODULATION MCNITOR
FRONT PANEL CONTROLS
(CONTINUED)

M803

Carrier Level Meter

Switch

Carrier Set Control
Establishes a carrier reference level necessary to insure that the circuits driving the modulation meters are affected only by modulation changes. The carrier level meter indicates the average RF signal level input to the monitor decoder circuits. The RF signal input is set to a level (indicated on the meter and determined by the manufacturer) by means of the carrier set control R819. As long as the carrier level indication is within the range of the meter ($+/-20 \%$ change of RF level), the modulation circuits will be within their design accuracy.

Two position calibration meter function switch. In the pilot tone position, the carrier meter must indicate in the black square (pilot) position. This is a fixed factory adjustment which does not have an external setting.

In the carrier set position, the meter must indicate in the center on (set). The set position can be adjusted with the carrier set and rear panel (RF attenuator) controls.

Vernier control which operates in conjunction with the 50 dB RF step attenuator on the back panel.

FIGURE 3-1
MODEL ASM-I
FRONT PANEL

MODEL ASM-1 AM STEREO MODULATION MCNITOR

REAR PANEL OUTPUTS

REF	DESCRIPTION	FUNCTION
J1	Remote Peak Flasher L+R	Drive signal for remote operation of flasher
J2	Remote Modulation Meter L+R	DC drive current for remote panel meter operation
J3	Remote Peak Flasher L-R	Drive signal for remote operation of flasher
J4	Remote Modulation Meter L-R	DC drive current for remote panel meter operation
J5	Envelope Detector	Test output to evaluate monitor decoder
J6	Pilot Tone Output	Connection for measurement of pilot frequency and level
J7	L-R Detector	L-R (quad) detector test output to evaluate monitor decoder
J8	In Phase Detector (I Det)	Test output to evaluate monitor decoder operation
J9	Unbalanced Output Left	For distortion measurements of left audio channel
Jl0	$L+\mathrm{R}$	L+R (mono) output for transmitter testing of monaural signal
Jll	Unibalanced Output Right	For distortion measurements of right audio channel
J12	L-R	L-R Output for transmitter testing of stereo signal
J13	RF Input	RF input from transmitter (10V RMS Max)
$\begin{aligned} & \text { S803 } \\ & \text { (Assembly } \\ & \text { A800) } \end{aligned}$	RF Atten	A 50 dB step attenuator in 10 dB steps used with the front panel carrier set control to calibrate the monitor
TBI	600 Balanced	Balanced 600 Ohm Stereo audio output

FIGURE 3-2
MODEL ASM-I
REAR PANEL

OPERATION AND PROOF OF PERFORMANCE

4.1 GENERAL

Although the FCC has deregulated the AM monaural proof of performance requirements, the $A M$ stereo proof of performance is still required. For AM stereo proofs, certain FCC rules apply. The characteristics to be measured are described in Section 73.1590 and the minimum performance specifications are described in Sections 74.40 and 73.128.

The following text outlines procedures on how to perform a full stereo as well as mono proof using the Delta AM Stereo Modulation Monitor.

4.2 MONITOR FEATURES

The Modulation Monitor is capable of accurately demodulating and indicating amplitude modulation, left minus right modulation, left channel modulation, right channel modulation, carrier shift, right or left channel noise levels, separation, and level of pilot tone. In addition, the level of incidental phase modulation can be readily calculated from the left minus right modulation indication when modulating with pure AM. The frequency of pilot tone modulation can be measured with instruments connected to rear panel ports on the Modulation Monitor. The distortion and noise levels of the Modulation Monitor are sufficiently low that the measurements made of the various performance characteristics will be reflective of the limits of the broadcast transmitter/stereo encoder performance.

4.3 L+R INDICATIONS

The main L+R modulation percentage indicator can be read directly on the Monitor by selecting L+R on the left modulation selector switch, S801A, and viewed on the left-hand meter. By using the $+/-$ function of S801A, either positive or negative L+R modulation will be indicated on the meter.

4.3.1 L+R Distortion Measurements

The LTR distortion can be measured by connecting a coaxial cable from the rear panel port (J10) labeled LTR to a distortion analyzer.

4.4 L-R INDICATIONS

The subchannel L-R modulation percentage indication can be read directly on the Monitor by selecting $L-R$ on the right modulation selector switch, S802A, and viewed on the right-hand meter. By using the $+/-$ function of S802A, either positive or negative L-R modulation will be indicated on the meter.

4.4.1 L-R Distortion Measurements

The $L-R$ distortion can be measured by connecting a coaxial cable from the rear panel port (J12) labeled L-R to a distortion analyzer.

4.5 LEFT ONLY INDICATIONS

The left (L) only modulation percentage indication can be read directly on the Monitor by selecting L on S801A and viewed on the left-hand meter. By using the $+/-$ function of S801A, either positive or negative left modulation will be indicated on the meter.

4.5.1 Left Only Distortion Measurement

The left channel distortion can be measured by connecting a coaxial cable from the rear panel port (J9) labeled LEFT to a distortion analyzer.

4.6 RIGHT ONLY INDICATIONS

The right (R) only modulation percentage indication can be read directly on the Monitor by selecting R on S802A and viewed on the right-hand meter. By using the $+/-$ function of $S 802 A$, either positive or negative right modulation will be indicated on the meter.

4.6.1 Right Only Distortion Measurement

The right channel distortion can be measured by connecting a coaxial cable from the rear panel port (JIl) labeled RIGHT to a distortion analyzer.

4.7 CARRIER SHIFT MEASUREMENT

The carrier shift can be read by observing the carrier level indicator on the C-QUAM AM Stereo Modulation Monitor. With no modulation applied, the carrier level indicator should be carefully set to the SEI position. The next step is to modulate the transmitter with $L+R$ at 25%, 50%, 85% and, if possible, 100% at 400 Hz . While viewing the carrier level indicator on the Monitor, the amount of carrier shift can be directly determined.

4.8 NOISE LEVEI MEASUREMENTS

The main $(L+R)$, sub ($L-R$), left (L) and right (R) channel noise levels can be directly read on the Monitor by selecting the appropriate mode for the left or right meters, and depressing the meter range buttons until an on scale reading is obtained. The noise level is obtained by adding the meter range value with the indication of the red dB scale on the meter. It is already calibrated against 100 percent modulation. Noise level measurements can also be made from the respective rear panel ports. The recommended method of measurement is using the respective rear panel ports.

Under main channel modulation only (AM modulation or L-R), any incidental phase modulation (IPM) will result in L-R meter readings related to the degree of incidental phase modulation. The peak angle of incidental phase modulation in radians is approximately equal to the voltage ratio of the L-R meter reading to 100% for low levels of IPM typically encountered in $A M$ transmitters. Thus, an L-R reading of -40 dB indicates an IPM phase angle of about 0.01 radians (0.57 degrees).

For best stereo transmission, IPM should be reduced by proper neutralization and power supply regulation in the transmitter. A good rule of thumb is that stereo separation is no better than subchannel ($\mathrm{L}-\mathrm{R}$) to main channel (L+R) crosstalk.

4.10 SINGLE CHANNEL SEPARATION MEASUREMENTS

For measurement of separation, modulate the transmitter with left only audio at $50 \%, 1 \mathrm{KHz}$. The left channel is modulated with a tone and a distortion meter or audio voltmeter is used to measure the audio output voltage from the left channel output of the Modulation Monitor. The audio voltage from the right channel output of the Modulation Monitor is then measured. The difference in $d B$ is the separation. The reverse process is used to measure the separation of a modulated right channel into the left.

The front panel meters can be used directly when set to "L" and " R ". The separation can be read directly on the panel meters by subtracting the readings in $d B$ of the two meters added to the respective pushbutton settings. Note that of the two methods for measuring separation, the method utilizing the rear panel ports will be the most accurate and is the preferred method.

4. 11 PILOT TONE LEVEL AND FREQUENCY

The relative pilot tone level may be measured directly on the Modulation Monitor by setting the PILOT/CARRIER switch under the carrier meter to the PILOT position and reading the level of pilot tone on the carrier level panel meter. When the correct level of pilot tone is present, the meter's indication will rest in the black block on the meter's face. To accurately measure the pilot level, remove all other modulation and set the L-R attenuator pushbutton to -20 . The meter should indicate just below -26 dB.

Pilot tone frequency may be measured from the PILOT TONE port (J6) on the back of the Modulation Monitor. Pilot tone should be $25 \mathrm{~Hz} \pm 0.1 \mathrm{~Hz}$.

SECTION 5

THEORY OF OPERATION

5.1 GEERRAL

A orief description of the function of each printed circuit board assembly : the Model ASM-1 is contained in Section 5.2 below. Sections 5.3 through 5.3 describe the operation of each assembly in greater detail.

5.2 CICUIT CARD FUNCTIONS

5.2.1 Assembly (D33-328, Reference Designation A100)

AVC Assembly controls the level of the L+R and L-R audio signals from the 〕ecoder Assembly allowing these audio signals to be used as an instantaresus indication of the modulation level. This assembly also contâins e carrier level detector and carrier meter drive circuitry, along with the lot detector and meter drive circuits. With the exception of the two feak lashers, the five remaining flasher drivers on the AVC panel are:

1. +125\% envelope limit
2. -100% envelope
3. L-R limit (100% L-R)
4. Neg. limit (high argle of phase modulation)
5. Pilot tone indicator
5.2.2 M Eer Control Assembly (D33-329, Reference Designation A300)

Ta Meter Assembly contains the audio amplifiers and peak detectors which dr.7e the front panel left and right meters. Additionally, it provides te circuitry to drive both left and right peak flashers operating in conjur tion with the front panel mounted thumbwheels. This assembly provides audio matrix circuitry for the balanced and unbalanced outputs to the $r \in \varepsilon$ panel ports. Pilot reject filters are included on this circuit card whic. eliminate the 25 Hz pilot tone from the meters when making measureme es of the left or right channel.

5.2.3 D. Coder Assembly (D33-332, Reference Designation A500)

Te Decoder Assembly receives 450 KHz IF from the Frequency Converter Assembly, then detects and separates the envelope $-(1+L+R)$ and quadrature - (L-R) audio signals which are sert to the AVC card. For test purposes, it provides three detected outputs to rear cabinet ports:
i. Envelope detector output, J5
2. In-phase detector, J8
3. L-R quadrature detector, J7

5.2.4 Frequency Corverter Assembly 103-324, Reference Designation A700)

The station RF signal from the input attenuator is converted to 450 KHz intermediate frequency (IF) on this board. Local oscillator frequency is derived by two optional methods. Units for which the operating frequency is unkrown prior to use (i.e. frequency agile) have a phase locked loop frequency synthesized local oscillator with frequency controlled by DIP switches. Units operating on a fixed frequency use a crystal oscillator local oscillator for higher performance by eliminating PLL phase roise.

5.2.5 Power Supply Assembly (D33-330, Reference Designation A900)

The power supply operates fron either a lloV or 230 V AC source. A line filter is used to filter the $A C$ line of unwanted signals or line interference. The power Supply Assembly is protected by a 2 ampere fuse and provides $+5,+15,-15$, and +24 volt DC outputs.

5.3 POWER ATTENUATOR ASSEMBLY

An $R F$ sample of the transmitter's signal is fed into JI3 on the rear panel. The power Attenuator Assembly's ladder attenuator is adjusted via the attenuator switch, S803, to reduce the level of the RF sample bringirg it within the control range of the carrier set potentiometer, R819. Care should be exercised when installing the unit to ensure that high level samples are not fed into the attenuator when switched to low attenuation settings.

5.4 FREQUENCY CONVERTER ASSEMBLY

This assembly converts the carrier frequency C-QUAM signal from the carrier set potentiometer to a C-QUAM signal at an intermediate frequency, usually 450 kHz . Four optional versions of this board exist. Part Numbers D33-324-1 and D33-324-2 are frequency agile versions for 10 KHz and 9 KHz frequency spacing respectively. With these optional assemblies, the operating frequency of the unit is determined by an internal DIP switch setting that sets the frequency of a phase locked loop synthesized local oscillator. Part Numbers D33-324-3 and D33-324-4 use a fixed frequency, crystal controlled local oscillator for 10 KHz and 9 KHz frequency spacing respectively. The fixed frequency, local oscillator contributes less phase noise than the synthesized version, realizing higher Monitor performance.

The crystal oscillator of Q701 and its buffer transistor, Q702, provide either a high frequency reference oscillator for the synthesized local oscillator or a four times multiple of the local oscillator. In the non-synthesized version, the four times local oscillator signal is fed from the collector of Q702, through DC blocking capacitor C717, to the line receiver chip, U707. The ECL level square waves from 4707 are divided by four in U704 to produce complimentary, ECL level local oscillator signals for the balanced mixer, U701.

For the synthesized version of this circuit, the output of 0702 drives a CMOS divider, U706, producing a reference frequency for the phase locked loop at four times the spacing frequency. Resistors R714, R718 and R720 convert the CMOS level reference signal to ECL level for use by the
phase-frequercy detector, U705. Differential phase ezor pu: from U705 are fed to the active loop filter of operational amplifier U7S. Residual reference frequency signals at the test point are balanced out y R723. The DC output of the loop filter controls the capacitance of varactor diode CR750 which controls the frequency of the oscillator circuit of Q751, the VCO. The output of the VCO is four times the local oscillator frequercy.

The VCO output is fed, through DC blocking capacitor C17, to line receiver U707. One output of 4707 drives divider U704 producing a balanced local oscillator sigral to the mixer, U701, as described above. The other output of the line receiver U707 drives the programmable divider of $U 702$ and U703. The division number is controlled by DIP switch S701. The output of the programable divider is compared to the reference frequercy by 4705 , the phase-frequency comparator. The loop functions to bring the programmable divider output to exactly the same frequency as the referenc. frequency. Thus, the VCO frequency will be the divider multiple of te reference frequency, four times local oscillator frequency.

The DIP switch setting is determined by the locai oscillator frequency desired. If, for instance, the Monitor will operate at 1230 KHz with 10 KHz spacing and 450 KHz intermediate frequency, the local oscillator frequency will be $1680 \mathrm{KHz}(1230 \mathrm{KHz}+450 \mathrm{KHz})$. The VCO frequency will be four times the local oscillator frequency or 6720 KHz . Tharefore, the division number of the programable divider will be $6720 \mathrm{KHz} / 40 \mathrm{KHz}$ or 168. The required DIP switch setting is the binary version of $168-1$ or 10100111 where the ones represent closed switches and zeros are open switches.

The C-QUAM signals from the carrier set control is fed, through transformer L702, to balanced mixer U701. The output of U701, containing the difference frequency component of the C-QUAM signal and the local oscillator sigral, is fed through transformer L701 to the buffer circuit of Q704. The tuned circuit of C727 and L703 tures the difference frequency (intermediate frequency) helping eliminate unwanted mixing components. The output of the buffer stage, Q704, provides an intermediate frequency, C-QUAM sigral for the Decoder Assembly.

5.5 DECODER ASSEMBLY

The Decoder Assembly functions to reduce the intermediate frequency (IF) C-QUAM signal from the Frequency Converter Assembly to aucio frequency (basebard) main channel $-(1+L+R)$ and subchannel $-(L-R)$ components. The basic operation of the circuit is described in Section 1.4 which should be reviewed before proceeding. The original Decoder Assembly, D33-332, and an improved Decoder Assembly, D33-363, are described below.

5.5.1 Decoder Assembly, D33-332

The IF C-QUAM signal is fed through the tuned circuit of C586 and L502 and the tured circuit of C590 and L501 further reducing unvanted mixing products. The IF C-QUAM signal then splits into three balanced sigral paths. The first path takes the signal into an RF limiter composed of the comporents associated with Q505 through Q508 and U510. The ownut of U510 is a constant amplitude signal at the intermediate frequency containing the

C-DUAM phase information. This signal feeds one port of balanced mixer U505. The second IF C-QUAM path takes the signal directly to the second port of mixer $U 505$ forming a product (envelope) detector. The output circuit of the mixer contains a trap, L503, to reduce sum frequency components, twice intemediate frequency. The mixer output is buffered through U511 and filtered by U503A producing the envelope detector (main charnel audio $-(1+L+R)$) output described in Section 1.4.

The third IF C-QUAM signal path is to a variable gain RF amplifier comprising the circuits of Q501 through Q504, Q509, U501 and U502. The balanced outputs of Q503 and Q504 drive one port of each mixer U508 and U509. U508 is the in-phase (I) synchronous detector, detecting the zero degree component of the amplified IF C-QUAM signal. Its output is buffered by U51l and filtered by U503B to produce the I detector output. U509 is the quadrature (Q) synchronous detector, detecting the minus ninety degree component of the amplified IF C-QUAM signal. Its output is filtered by U504C producing the subchannel - (L-R) audio signal.

The buffered outputs from the envelope detector, U505, and the I detector, U508, are compared by the circuits of U505, U507 and Q510 through Q512. Comparator output (error) signals are fed to the variable gain RF amplifier control line, U501 pins 2 and 4, automatically adjusting the gain of the amplifier so that the output of the I detector is equal to the ervelope detector output. At very high gain, corresponding to large phase angle swings, the variable gain RF amplifier gain versus control voltage curve reverses slope which can cause Decoder "lockup". The voltage limiter circuit of U503D, CR504 and R501 keeps the control line voltage out of the "lockup" region.

The output of the $L-R$ detector is fed to an inverting 25 Hz (pilot tone) tuned circuit of U504A. The maximum response of this circuit is adjusted to 25 Hz by R502 and its output is summed with the non-irverted L-R signal at the junction of R572 and R573. The magnitude of the inverted 25 Hz summing current is adjusted by R571 so that no 25 Hz pilot signal component appears on the input of $U 504 \mathrm{D}$. The remaining $L-R$ (Q detector) signals are filtered by the PLL loop filter of U504D. Its output controls the capacitance of varactor diode CR503 thereby controlling the frequency of the crystal oscillator of the loop VCO, Q513. The VCO frequency is eight times the intermediate frequency and is buffered by $Q 514$ and fed to dividers U512 and U513. U512 provides balanced ECL level in-phase and quadrature signals to the high level ports of the I and Q synchronous detectors. The PLL acts to keep the quadrature detector $D C$ output to zero.

The PLL has a narrow capture range which may not be sufficient during start-up to acquire lock on the IF C-QUAM sigral. Under this condition the I detector output will swing wildly beyond the levels encountered in normal operation. This output from U503B is fed to a level detector circuit, U503C. Whenever the I detector output swings wildly, U503C peak detects through CR505 and C566 activating relay K501 through follower U504B. K501 places R651 in the circuit increasing the gair of the loop filter to widen the capture range.

5.5.2 Decoder II Assembly, D33-363

The intermediate frequency C-QUAM signal passes through the tuned circuits of L502 and L501 and is fed to three balanced signal paths. The first path takes the signal through transistor buffer stages of U515 (in pirs 13 and 16 and out pins 2 and 8) to a limiter circuit of 4510 (in pins 9 ard 10). The output of $U 510$ (pins 2 and 3) is a constant amplitude, intermediate frequency signal containing C-QUAM phase information. This signal feeds the high level input port of balanced mixer U505, pins 8 and 10. The second IF C-QUAM path takes the signal directly to the low level input port of mixer 4505 (pins 1 and 4 forming an envelope detector. The output circuit of this mixer, at pins 6 and 12 of U505, contains a second harmonic trap circuit of L 503 to eliminate the 900 KHz sum signal leavirg the desired baseband signal ($1+L+R$) predominart. This balanced output is buffered through the follower circuits of U511 (in pins 3 and 5, out pins 4 and 8) and is filtered and converted to an unbalanced main audio channel signal, $-(1+L+R)$, by the operational amplifiers U514A and U514B. This signal is the Envelope Detector output appearing at TP515 and the rear panel BNC port, J5.

The third IF C-QUAM signal path is to a variable gain RF amplifier with an input at pins 6 and 9 of U501. This circuit is composed of U501, U502, Q501 through Q504 and associated components. The output of this variable gain amplifier appears on the emitters of Q503 and Q504 feeding the low level inputs of balanced mixers U508 and U509 at pins 1 and 4 of each chip.

Mixer U 508 is an in-phase synchronous (I) detector demodulating the zero degree component of the amplified IF C-QUAM signal. Its output circuit, pins 6 and 12, contains a second hamonic trap to remove the 900 KHz mixing product leaving a predominant baseband output. This signal is fed through the follower circuits of U511 (in pins 10 and 13 and out pins 11 and 12) to operational amplifier circuits of U503A and U503B which filter and convert the signal to unbalanced form. This is the I Detector output appearing at TP505 and the rear panel BNC port, J8.

U 509 is a quadrature (Q) detector demodulating the minus ninety degree component of the amplified IF C-QUAM signal. Its output, pins 6 and 12, contain a second hamonic trap to remove the 900 KHz mixing product leaving a predominant baseband signal. This signal is filtered and converted to unbalanced form by operational amplifiers U514C and U514D and appears at TP510 and the rear panel L-R Detector BNC port, J7.

The quadrature detector output signal from TP510 is fed to a 25 Hz inverting bandpass filter of U504A. A 25 Hz pilot signal at TP513 will be 180 degrees out of phase with the same signal at TP510. These two signals are summed at TP514 so that any 25 Hz pilot signal component cancel. The remaining quadrature detector signal is fed to a phase lock loop filter of U504B. The output of this filter controls the frequency of the voltage controlled crystal oscillator of Q513. The output of this oscillator is buffered by Q514 and divided (in frequency) by two in U513. The signal is
further divided by four in the dual D flip ilop, U512. The signals from U512 are a pair of balanced square waves in quadrature. The 0 degree balanced signal from U512, pins 2 and 3, feeds the high level port of the I detector, U508 pins 8 and 10. The -90 degree balanced signal from 4512 pins 15 and 14 feeds the high level port of the Q detector, U509 pin 8 and 10 .

The phase lock loop (PLL) described above acts to keep the average (DC) voltage of the quadrature detector output at zero. This can only occur when the signals from U512 are in proper phase relationship with the IF C-QUAM signal. If the signal at the high level port of the Q detector is not in quadrature (-90 degrees) with the in phase (carrier) component of the IF C-QUAM signal (a phase error), the output of the quadrature detector would contain a DC component. This DC signal would integrate in the loop filter causing a correction voltage to appear at the VCO to reduce the phase error.

The PLL has a narrow capture range which may not be sufficient during start-up to acquire lock on the IF C-QUAM signal. Under this condition, the I detector output at TP505 will swing wildly beyond the levels encountered in normal operation. Whenever this occurs, operational amplifier U503C will charge C566 through CR505 which will cause operational amplifier U503D to cut on K501. R651 is then placed in the loop filter circuit widening the PLL capture range.

As described in section 1.4, the RF variable gain amplifier is controlled by an error signal derived from comparing the envelope detector signal with the I detector signal. The buffered output signals from these detectors are taken from U511 and converted to unbalanced signals by U505 and U507. These unbalanced signals from TP516 and TP517 are compared by the differential amplifier circuit of Q511 and Q512 producing the error or correction signal. This signal is buffered through $Q 510$ feeding the correction line and controlling the variable RF amplifier gain.

The gain of the variable gain RF amplifier increases with negative voltage until, at a very high gain corresponding to large phase angles, the gain versus control voltage curve reverses slope. Under this condition, the decoder may "lockup". A voltage limiter circuit of U515 and Q509 on the correction line prevents "lockup". As the correction line approaches a protective voltage limit set by R501, U515A output (pin 7) comes off the negative rail and brings the positive input of U515B above the negative input. The output of U515B swings from the negative rail to the positive rail cutting on Q 509 through CR507. Q509 shunts some of the differential signal to $Q 511$ and 0512 reducing the loop gain. As the correction line voltage continues to fall, the output of U515A will rise until CR504 conducts for hard limiting on the correction lines.

5.5 AVC ASSEMBLY

The AVC Assembly regulates the level of the main channel $-(1+L+R)$ and subchannel $-(L-R)$ audio from the Decoder Assembly for proper metering. This is done by feeding the envelope detector $-(l+L+R)$ and Q detector $-(L-R)$ signals through two carefully adjusted four quadrant multipliers acting as matched variable amplifiers controlled by a common feedback sigral. The
feedback signal is derived from comparing the $D C$ output of the envelope four quadrant multiplier (regulated envelope) with a DC standard voltage. Any difference between the two $D C$ voltages will generate a feedback (error) signal adjusting the gain of both multipliers to re-establish a correct regulated envelope signal.

U102 and Ul04C together are the envelope multiplier. Its output is fed to U104A which compares this regulated ervelope signal to the DC reference voltage from U104B. U104D filters the error signal and provides the gain control feedback voltage to maintain regulated signals from both multiplier circuits. If, for instance, the transmitter's power drops 5%, then the DC component of the envelope detector output and the AC components of the envelope and Q detectors would drop by 5\%. If no correction were taken, our modulation meters would read 5% low. However, since the regulator circuit will increase the gain of both multipliers by 5% to restore the DC component level, the AC components are also increased by 5\%, restoring correct meter reading.

Since the $D C$ level from the regulated envelope signal is now fixed, it is easily removed by the circuit of Ul05C yielding main channel audio (L+R) for positive peak meter readings. This signal is inverted by Ul05B for $-(L+R)$ peak meter readings. The output of the regulated quadrature multiplier, U103 and U106A, is inverted by U105C for $+(L-R)$ peak meter readings and inverted again by Ul06D for $-(L-R)$ meter readings. The $+(L+R)$, $-(L+R),+(L-R)$ and $-(L-R)$ signals are dematrixed by Ulll producing $+L$, $-L$, $+R$ and $-R$ signals for peak meter readings. These eight peak meter reading signals are routed to the front panel switch decks, S801 and S802, where they are selected and attenuated before traveling to the appropriate meter circuit and peak flasher (thumbwheel controlled) circuit.

The reference voltage (equal to regulated envelope $D C$ component) from U104B is buffered by Ul05D and fed to the $+(L+R) 125 \%$ comparator, U117C, and the (L-R) 100% comparator, U117A. The regulated envelope signal, $(1+L+R)$, is buffered by U105A and fed to the $+(L+R) 125 \%$ comparator circuit. R161, R152 and R255 divide the regulated envelope signal such that the regulated envelope signal must reach $+125 \%$ in order for the voltage on U117C pin 8 to exceed the reference voltage on pin 9. When this occurs, the output of Ull7C will go low, triggering one-shot Ul08 which flashes the front panel $+125 \%$ modulation indicator, DS802.

The regulated quadrature signal from Ul06C drives an absolute value circuit, Ul06B, which converts both positive and negative voltages to positive voltages. Whenever this absolute value sigral exceeds the magnitude of the reference voltage, ($\mathrm{L}-\mathrm{R}$) is greater than 100% and the output of comparator U117A goes low. This triggers one-shot U107 flashing the front panel L-R LIMIT ($\mathrm{L}-\mathrm{R}$ 100\%) indicator, DS805.

Whenever the regulated envelope signal from U105A drops below zero volts, the negative envelope modulation is more than 100% (overmodulation) and the output of comparator Ull7D goes low. This triggers one-shot Ul09 firing the front panel L+R -100% indicator, DS801.

Comparator U117B functions to detect high phase angles of the C-QUAM signal by analyzing the absolute value of the regulated quadrature signal from U106B and a divided version of the regulated envelope signal. For high angles to occur, the regulated envelope signal must be small (regative envelope modulation) while the quadrature signal is large. This car be confirmed by observirg Figure 1-3. R258 is adjusted so that the output of Ul17B goes low whenever the phase angle reaches 83 degrees, equivalent to 90\% single channel modulation. A low output from U117B triggers one-shot Ull0 flashing the front parel NEGATIVE LIMIT (High Angle) indicator, DS805. If this flasher fires, corrective action should be taken since integrated circuit decoders in receivers cannot decode such high angle modulation.

The regulated quadrature signal from Ul06C is filtered by four 25 Hz bardpass sections of Ull3 to isolate the pilot signal. The output of this filter is fed to the rear panel pilot tone connector, J6, for pilot frequency checks. The PLL tone decoder, Ull4, will lock on the presence of a pilot signal illuminating the front panel PILOT indicator, DS807. CR103 and C136 peak detect the pilot signal for meter amplifier U115A and Ull5D which drives the carrier (pilot) meter, M803, through the meter function switch, 8803.

The envelope detector output (unregulated) is filtered by U112D to remove modulation components. The output of Ull2D (positive DC) is compared to $a-1.2$ volt $D C$ reference from U101A by summing amplifier Ull2C. Its output will be zero volts for a nominal signal level from the envelope detector (-1.000 VDC) which results in a SET reading (0 ma) on the carrier level meter, M803. Ull5C buffers and amplifies the output of the summing amplifier providing carrier level meter current through R264 and the meter function switch, S803. The circuits of U112A and Ull2B are protection circuits for the carrier level meter preventing excessive current flow in the meter circuit.

5.7 METER CONTROL ASSEMBLY

The $+(\mathrm{L}+\mathrm{R}),-(\mathrm{L}+\mathrm{R}),+(\mathrm{L}-\mathrm{R}),-(\mathrm{L}-\mathrm{R}),+\mathrm{L},-\mathrm{L},+\mathrm{R}$ and -R signals from the AVC Assembly are selected by the front panel switch deck assemblies and are fed to the variable peak flasher circuits on the Meter Control Assembly. For clarity, the left peak flasher circuit will be described since the right circuit is identical.

The selected signal is buffered by U305A and is compared to a variable threshold voltage by U306. The variable threshold voltage is generated by the constant current source of U303A and the variable resistor of the left thumbwheel switch on the front panel. This determines the threshold of modulation (the selected signal) that will trip comparator U305. Whenever the selected signal exceeds the threshold, the output of U306 will go low triggering one-shot U307. The output of the one-shot fires the front panel peak flasher indicator, DS803, and is fed to the rear panel remote flasher connector, JI.

After attenuation, the same selected signals from the AVC Assembly are fed to the meter quasi-peak detector circuits on the Meter Cortrol Assembly. Again, for clarity, only the left meter circuit will be described
since the right meter circuit is identical. The attenuated signal is fed through the amplifier circuit of U301B to a precision positive peak detector circuit of U301A and U301B. Its output is buffered by U302A driving the left front panel meter, M801. The detector output also goes through isolation resistors R 442 and R 443 to the rear panel remote modulation meter corrector, J2.

For the single channel audio signals ($+\mathrm{L},-\mathrm{L},+\mathrm{R}$ and -R), proper peak flasher and metering performance requires the absence of pilot signal components. Whenever these single channel audio signals are selected, they are routed from the switch deck assemblies through pilot frequency rejection circuits on the Meter Control Assembly and back to the switch deck assemblies. Only the left pilot reject filter will be described since the right pilot reject filter is identical. The circuits of U304A, U304B and U305B form a bi-quad (state variable) filter configured as a notch filter. R325 adjusts the notch frequency to eliminate the 25 Hz pilot signal from the single channel audio signals.

The envelope detector and quadrature detector outputs from the Decoder Assembly are AC coupled to dematrixing circuits of U308 and U309. The outputs of U309B and U309D are sent to the left and right uribalanced output cornectors, J9 and J1l respectively, on the rear panel. The outputs of U308A and U309C are isolated through T301 and T302 and are fed to the balanced output barrier strip, TBl, on the rear panel. pilot signal components exist in all of these outputs.

5.8 POWER SUPPLY ASSEMBLY

The Power Supply Assembly converts the dual secondary AC voltages of the power transformer to regulated $+5 \mathrm{VDC},+15 \mathrm{VDC}$ and -15 VDC . The low voltage AC secondary from the power transformer is fed to a bridge rectifier circuit composed of CR904, CR905, CR907 and CR908. For units Serial Numbers 51 and below, the power transfomer secondary is center tapped and diodes CR907 and CR908 are omitted. The rectified voltage charges filter capacitor C906 which supplies current to voltage regulator VR901 generating +5 VDC. VR901 is mounted on the side panel for heat sinking.

A higher voltage, center tapped, power transformer secondary feeds a second bridge rectifier composed of diodes CR900 through CR903. The positive side of this bridge rectifier charges filter capacitor C900 supplying current to the +15 VDC regulator, $V R 900$, mounted on the side panel for heat sinking. The negative side of the bridge rectifier charges filter capacitor C90l which supplies current for the -15 VDC regulator, VR902, mounted on the side panel for heat sinking. The unregulated voltages from C 900 and C901, appearing on J18 pin J and pin R respectively, are uriused.

This section describes on-site maintenance procedures. The ASM-1 AM Stereo Modulation Monitor is a self-contained unit requiring little maintenance. The following paragraphs outline maintenance procedures that can be performed on-site.

CAUTIION

When servicing the Monitor, absolutely no internal adjustments should be made (unless discussed in the following paragraphs). The ASM-1 Monitor is a precision instrument and factory calibrated using specialized test equipment under a precisely controlled and sequential procedure. Internal tampering of any adjustment will hinder many operating parameters and seriously effect its measuring/operating capability. If a problem exists that cannot be corrected and does not apply to the procedures outlined in this section; factory attention is necessary.

6.2 GENERAL CLEANING

It is obvious that when cleaning the front panel, any abrasive cleaning agent can do damage to the painted surface as well as to the meter faces. It is recommended that a liquid glass cleaner on a soft, clean cloth be used. The interior of the unit must be free of foreign objects. To clean it, power down the unit and remove carefully all printed circuit assemblies. With the unit upside down, wipe out all foreign objects. Forced, low pressure air can also be used. After the cleaning is complete, reseat all printed circuit assemblies in their proper card edge connectors as shown in Figure 2-1.

6.3 POWER SUPPLY CHECK

The $D C$ outputs of the Power Supply Assembly can be checked and verified at the following locations on the Power Supply's card edge connector, J18:

Regulated Voltage	Tolerance	Location	Ripple
	$\pm 0.25 \mathrm{~V}$	J18-B, 2,16	$<25 \mathrm{mN}$
+15 V	$\pm 0.50 \mathrm{~V}$	J18-F,6	$<25 \mathrm{mN}$
-15 V	$\pm 0.50 \mathrm{~V}$	J18-P,13	$<25 \mathrm{mN}$

Unregulated Voltage	Tolerance	Location	Ripple
	$\pm 4.0 \mathrm{~V}$	$J 18-\mathrm{J}$	N / A
-24 V	$\pm 4.0 \mathrm{~V}$	$J 18-\mathrm{R}$	N / A

6.4 REFERENCE OSCILLATOR A MENT

The capture range of
This is a very small window may be necessary to adjust th: Frequency Converter Assembly (D. near the center of the capture side of CR506 on the Decoder referenced to ground. Adjust C to 6 volts DC. Extreme caut adjustments on the Decoder and

KL on the Decoder Assembly is $\pm 20 \mathrm{~Hz}$. hich the Decoder Assembly operāes. It put of the reference oscillator on the 24) to keep the PLL on the Decoder at or e. To accomplish this, probe the banded sembly with an accurate $D C$ voltmeter, on the Frequency Converter Assembly for 5 must be given not to touch any other lency Converter Assemblies.
6.5 FRONT PANEL METER LAMF \quad ACEMENT

The internal drive ci ry for the front panel meter lamps was designed as to afford long life the meter lamps. However, if it becomes necessary to change out a meter \quad, \quad, power down the unit and remove it from its rack mounting. Disconnec the front panel assembly by the four \#10 machine screws on the front pan housing and desolder its leads the new lamp to the teminal s housing. Carefully reinstall wires are being pinched or cut. Remove the bad meter lamp from its meter the terminal strip. Solder the leads of and reseat the new lamp into its meter front panel, insuring that no harness front panel.

LIST OF MATERIAL

7.1 INTRODUCTION

Maintenance parts in the ASM-1 are identified by reference designations. These designations are used on the photographs, schematic diagrams, and Lists of Material to identify the components. The component reference designation is also marked adjacent to the component on the printed circuit assemblies. The letter(s) in the reference designation identifies the class of item such as a resistor, relay or transistor or identifies a subassembly such as a printed circuit assembly. The number differentiates between parts or subassemblies of the same class.

Reference designations for the parts of a subassembly are grouped in a hundreds series with some subassemblies having two hundreds series. For instance, the AVC assembly has both the 100 s and 200 s series of parts. Rl04 and R264 are both resistors on the AVC assembly.

The Lists of Material for the Model ASM-1 AM Stereo Modulation Monitor and for the maintenance significant assemblies are presented as follows:

Title	Section	Page
ASM-1 System Components	7.2	$7-2$
Final Assembly, ASM-1	7.3	$7-3$
AVC Assembly	7.4	$7-6$
Meter Control Assembly	7.5	$7-20$
Decoder Assembly	7.5	$7-30$
Frequency Converter Assembly, Synthesized	7.7 .1	$7-46$
Frequency Converter Assembly, Non-Synthesized	7.7 .2	$7-52 A$
Power Attenuator	7.8	$7-53$
Power Supply Assembly	7.9	$7-54$
Switch Panel Assembly, Left	7.10	$7-56$
Switch Panel Assembly, Right	7.11	$7-57$
Left and Right Thumbwheel Switch Assembly	7.12	$7-58$
Decoder II Assembly	7.13	$7-59$

$$
4
$$

D33－327 0
$\underset{N}{n}$
$\underset{\sim}{n}$
$\underset{\sim}{n}$ 8Z\＆－をとव 6Z£－દદa てદદ－عદด D33－363
D33－324－3 D33－324－4
D33－333
D33－330－2
$507-4757-3731-500$
 ∞
$\stackrel{\infty}{N}$
N

Micro Lamp

Reference Designation	Description	Manufacturer	Manufacturer Part No.	$\begin{gathered} \text { Delta } \\ \text { Order No. } \end{gathered}$
Fl	Fuse, Type 3AG, Slo-Blo, 1A (Use For 120 VAC Operation)	Littelfuse	313001	632-1020
Fl	Fuse, Type 3AG, Slo-Blo, 0.5A (Use For 240 VAC Operation)	Littel fuse	313.500	632-1015
FLl	Filter, Line	Corcan RTron	$\begin{aligned} & 2 \mathrm{~K} 4 \\ & \text { RNF-2P6 } \end{aligned}$	630-0002
J14	Connector, Card Edge, Zero Insertion Force, Side Entry	Amp	531025-3	618-0077
$\begin{aligned} & \text { J15 thru } \\ & \text { J18 } \end{aligned}$	Same as J14			
M801	Meter, Modulation Level	Meter-Master	591C42-20A	002-0051
1802	Same as M801			
M803	Meter, Carrier/Pilot Level	Meter-Master	591B42-19	002-0050
M819	Resistor, Variable, 200 Ohm	Allen-Bradey	RV4NA YSD201A	240-0035
S801	Switch, SEDT, Panel Mount	American Switch	ST1-1KMZQ	660-0049
S804	Thumbwheel Assembly, Left and Right	Del ta	D34-69	034-0069
S805	Same as 804			
Tl	Transformer, Power, Dual Primary, Dual Secondary	Signal	DMT8-15	362-0031
TB1	Terminal Block, 6 Position	Kulka	599-2004-6	670-0010-006
W1	Cord, Line, 3 Cond, 13 AWG	Belden	17280	678-0001

$\begin{aligned} & \stackrel{\sim}{w} \\ & \stackrel{\text { 心 }}{0} \end{aligned}$	Reference Designation	Description	Manufacturer	Manufacturer Part No.	Del ta Order No.
	Cl06	Capacitor, Fixed, Electrolytic, 100 uF, 25 V	Nichicon	ULBIELOIM	320-0067
	Cl07	Capacitor, Fixed, Film, .047 uF, 100V	Nichicon	QYA 2 A 473 K	330-0020
	C108	Same as Cl06			
	C109	Capacitor, Fixed, Monolithic, Ceramic, . $47 \mathrm{uF}, 50 \mathrm{~V}$	Sprague	1C20Z5U474M050B	310-0052
	C110	$\begin{aligned} & \text { Capacitor, Fixed, Film, } \\ & .01 \text { uF, } 100 \mathrm{~V} \end{aligned}$	Nichicon	QYA 2A 103K	330-0015
	Clll	Same as Cl09			
	Cl12	Same as Cllo			
	Cl13	Same as Cl09			
	C114	Same as Cllo			
	Cl15	Same as Cl09			
	C116	Same as Cllo			
	Cl17	Capacitor, Fixed, Tantalum, 4.7 uF, 50V	Sprague	CSR13G475KM	326-0009-001
	C118	Capacitor, Fixed, Electrolytic, 2.2. uF, 50V	Nichicon	ULB1H2R2M	320-0062
	C119	$\begin{aligned} & \text { Capacitor, Fixed, Film, } \\ & 0.1 \mathrm{uF}, 100 \mathrm{~V} \end{aligned}$	Nichicon	QYA 2 A 104 K	330-0021

n
N
$\mathbf{8}$
0
1
∞

+

Manufacturer
LM385H-1. 2
1N4148.
$R L 07 S 332 \mathrm{~J}$
RL 07 S 822 J

Manufacturer
Part No.

7.4				
Reference Designation	Description	Manufacturer	Manufacturer Part No.	Delta Order No.
R110	Resistor, Fixed, Film, 10K Ohm, 5\%, 1/4W		RL07S 103J	202-0103
R111	Same as Rl04			
R112	Resistor, Fixed, Film, 4.75K Ohm, 1\%		RN55D4751F CCF554751F	212-4751
R113	Same as Rll2			
R114	Resistor, Fixed, Film, 27K Orm, 5\%, 1/4W		RL07S 273 J	202-0273
R115	Resistor, Fixed, Film, 330K Olm, 5\%, 1/4W		RL07S 334 J	202-0334
R116	Same as R115			
R117	Same as R114			
R118	Resistor, Fixed, Film, 15K Ohm, 5\%, 1/4W		RL07S 153 J	202-0153
R119	Resistor, Fixed, Film, 22K Ohm, 5\%, 1/4W		RL07S223J	202-0223
R120	Same as R109			
R121	Same as Rllo			
R122	Same as R104			
R123	Same as Rl. 12			
8124	Sme as R112			

LIST OF MATERIAL，AVC ASSEMBLY，REFERENCE DESIGNATION A100，D33－328，REV．J CONTINUED

RL07S753J
3299Y－1－502
1どCLSLOJ』

Bourns

7.4

nxy7
R132
R133
R135
R136
R137
R138
？ 139
R140
R142 thru
R146

Manufacturer
Part No.

RN55D1002F
CCF551002F

fTZ8SLOTd
てZ80-Z0Z

> -

	0
0	z
0	1
\vdots	0
0	0
0	4
0	

RL07S392J

RL07S 154 J
RL07S 562 J
$R L 07 \mathrm{~S} 124 \mathrm{~J}$

90zd se oures Same as R139 Same as R205 Same as R139

Same as R149
Same as Rl77
Resistor, Fixed, Film, 5.6K Ohm, 5\%, 1/4W Resistor, Fixed, Film, 120K Ohm, 5\%, 1/4W
Sante un zand
Resistor, Fixed, Film, 39K Ohm, 5\%, 1/4W
Resistor, Fixed, Film, Resistor, Fixed, Film, 1. 2 K OM', 5\%, Same as R139 Same as p204

R201. R202 2023 R204 R205 2206 $R 207$
2208 R209
R210
R211

$$
7.4
$$

 -

Reference Designation	Description	Manufacturer	Manufacturer Part No.
R212	```Resistor, Fixed, Film, 1.21M Ohm, 1%```		RN55D1214F CCF551214F
R213	Resistor, Fixed, Film, 1M Ohm, 1\%		RN55D1004F CCF551004F
R214	```Resistor, Fixed, Film, 4.75M Ohm, 1%```		$\begin{aligned} & \text { RN55D4754F } \\ & \text { CCF554754F } \end{aligned}$
R215	Same as R212		
R216	```Resistor, Fixed, Film, 562K Ohm, 1%```		$\begin{aligned} & \text { RN55D5623F } \\ & \text { CCF555623F } \end{aligned}$
R217	$\begin{aligned} & \text { Resistor, Fixed, Film, } \\ & 2.21 \mathrm{M} \text { Otm, } 1 \% \end{aligned}$		$\begin{aligned} & \text { RN55D2214F } \\ & \text { CCF552214F } \end{aligned}$
R219	Resistor, Fixed, Film, 390K Orm, 5\%, 1/4W		RL07S 394J
R220	Resistor, Fixed, Film, 270K Orm, 5\%, 1/4W		RL07S 274 J
R221	Resistor, Fixed, Film, 1. 2 M Ohm, 5%, $1 / 4 \mathrm{~W}$		RL07S 125 J
R222	Same as R212		
R223	Same as R213		
R224	Resistor, Fixed, Film, $560 \mathrm{Ohm}, 5 \%$ 1/4W		RL07S561J
R225	Same as Rl32		

\bigcirc	-	N
	-	-
4	\bigcirc	8
$\stackrel{\square}{0}$	$\stackrel{1}{\sim}$	$\stackrel{\sim}{\sim}$
\bigcirc	-	-

Del ta
Order No.

$202-0302$

CONIINUED Manufacturer
Part No.
 TL084CN MCl455P1 NE567N
MC1741CP
MC3302P
$65507-103$
$65474-001$ D33-328, LIST OF MATERIAL, AVC ASSEMBLY, REFERENCE DESIGNATION A100,
号 Same as Ul04
Integrated Circuit, PLL,
National
Semiconductor
Motorola
Motorola
Berg
Berg

Integrated Circuit, Modulator
Same as Ul 02.
Integrated Circuit, suad Op-Amp
Same as Ul04
Same as Ul04
Integrated Circuit, Timer,
8 Pin
Same as Ul07
Same as Ul07 Integrated Circuit, PLL,
8 Pin
Same as Ul04 Integrated Circuit, Op-Amp, Integrated Circuit, Op-Amp,
8 Pin Integrated Circuit, Comparator, 14 Pin
Header, Test/Operate Jumper,
3 Position Jumper, Test/Operate

$$
7.4
$$

REV. F REFERENCE DESIGNATION A300, D33-329, REV
LIST OF MATERIAL, METER CONTROL ASSEMBLY,

196D106X9035PE4

 ULBIE101M1C20Z5U474MO50B
$5 \mathrm{GA}-\mathrm{S} 10$
7.5
$22 R B 473 \mathrm{~F}$ Manufacturer

$$
\begin{aligned}
& \text { Manufacturer } \\
& \text { S\&EI }
\end{aligned}
$$

Sprague
Sprague Nichicon
Sprague
Sprague Nichicon
Sprague
Sprague Description
Capacitor, Fixed, Polycarbonate,
.047 uF, 1%
Same as C304
Same as C304
Same as C304 Capacitor, Fixed, Tantalum, 4.7 UF, 35 VDC Same as C317 Capacitor, Fixed, Tantalum,
$10 \mathrm{uF}, 35 \mathrm{~V}$ Capacitor, Fixed, Electrolytic, Capacitor, Fixed, Monolithic Ceramic, . $47 \mathrm{uF}, 50 \mathrm{~V}$
Capcitor, Fixed, Ceramic, .01 UF, 1 KV
Same as C323
Same as C324
Same as C325 Same as C319

 Sprague
ATERIAL, METER CONTROL ASSEMBLY, REFERENCE DESIGNATION A300, D33-329, REV. F CONTINUED
CONTINUED
$\begin{gathered}\text { Delta } \\ \text { Order NO. } \\ 310-0048\end{gathered}$

\section*{| 0 |
| :--- |
| 8 |
| 8 |
| 0 |}

$\begin{array}{ll}\infty & m \\ 0 & n \\ 0 & 0 \\ 1 & 1 \\ 0 & \stackrel{1}{0} \\ & -\end{array}$
N
O
N
N
N

∞
$\stackrel{\infty}{8}$
1

号
点

Manufacturer	Manufacturer Part No.
Sprague	5GA-D47
H. P.	5082-2800
	MPS 6513
	RN55D6813F
	RN55D5622F
Bourns	3299Y-1-104

ATERIAL, METER CONTROL ASSEMBLY,
Description
Capacitor, Fixed, Ceramic Disc,
.0047 uF, 1KV
Same as C324
Same as C344
Same as C324
Same as C324
Diode, Silicon, Hot Carrier
Same as CR301
Same as CR301
Same as CR301
Transistor, NPN
Resistor, Fixed, Film,
$681 K$ Ohm, 1\%
Same as R318
Resistor, Fixed, Film,
56.2 K Ohm, 1%
Same as R320
Resistor, Variable,
100K Ohm N HO LSI
7. 5 LIST
$\begin{gathered}\text { Reference } \\ \text { Designation }\end{gathered}$
C344
C345 thru
C348
C349
C350
C351
CR301
CR302
CR304
CR305
Q301
R318
R319
R320
R321 thru
R324
R325
CONIINUED
$\begin{gathered}\text { Delta } \\ \text { Order No．}\end{gathered}$
$202-0274$
$202-0152$
$202-0101$

的家 | A300，D33－329， |
| :--- |
| $\begin{array}{c}\text { Manufacturer } \\ \text { Part No．}\end{array}$ |
| RL07S274J |
| RL07S152J |
| RL07S101J |

 ERENCE DESIGNATION
Manufacturer Bourns
空 OF MATERIAL，METER CONTROL AS LIST
R326
R327
R343
R356
R357
R358 thru
R362
R363
R364
R365
R377
R378
R3379
R380

CONTINUED
Delta Order No.
202-0332
$202-0821$
$212-1213$
$212-3322$
$202-0102$

RN55D1213F
RN55D3322F
RLOTS102J

7.5 LIST O
7.5 LIST
Reference
Designation

Reference
Designation

R387
R387
R389
R389
 R392

R394 R395 R396 R397 R398 R399

R401
CONTINUED
$\begin{gathered}\text { Delta } \\ \text { Order No. } \\ 244-0072\end{gathered}$
$202-0184$
$204-0331$ REV. F

REFERENCE DESIGNATION
LIST OF MATERIAL, METER CONTROL ASSEMBLY,
Manufacturer
Bourns Description
Resistor, Variable, 500 Ohm
Same as R399
Same as R398
Resistor, Fixed, Film,
180K Ohm, 5\%, 1/4W
Resistor, Fixed, Film,
330 Ohm, 5%, 2 W
Same as R406
Same as R395
Same as R395
Same as R398
Same as R399
Same as R401
Same as R402
Same as R399
Same as R398
Same as R405
Same as R406
Same as R406
7.5

[^0]R402
 R407
R408
R409
R410
R411
R412
R413 R414 R415 R416 R417
R418
CONTINUED

$i n$
$\stackrel{n}{n}$
$\underset{\sim}{0}$
or

Ñ
रे
O
or

8
0
0
O
O
O品 A300, D33-329,

RL07S104J
SOOTSLOTX

$$
\begin{aligned}
& \text { Same as R378 } \\
& \text { Same as R327 }
\end{aligned}
$$

Resistor, Fixed, Film,
Resistor, Fixed, Film,

$$
\begin{aligned}
& \text { Resistor, Fixed, Film, } \\
& 2.2 \mathrm{~K} \mathrm{Ohm}, 5 \%, 1 / 4 \mathrm{~N} \\
& \text { Same as } \mathrm{R} 426
\end{aligned}
$$

$$
\begin{aligned}
& \text { Same as R327 } \\
& \text { Same as R327 }
\end{aligned}
$$

Resistor, Fixed, Film,

$$
\begin{aligned}
& \text { Resistor, Fixed, F1m } \\
& \text { look ohm, } 5 \%, 1 / 4 \mathrm{w}
\end{aligned}
$$

Same as R430
98\&y se әures
Same as R343
Resistor, Fixed, Film, 10 Ohm, 5\%, 1/4W

$$
\begin{aligned}
& \text { zety se әures } \\
& \text { ¡\&ty se aures }
\end{aligned}
$$

Same as R434
 W $\mathfrak{A O}$ USIT
7.5
TERIAL, METER CONTROL A
Description
Reference
Designation
 R426
$R 427$
$R 428$
R429

$\stackrel{ल}{\oplus}$
R434
R435
R436
R437

Reference	Description	Manufacturer	Manufacturer Part No.	$\begin{gathered} \text { Delta } \\ \text { orrder №. } \end{gathered}$
${ }_{\text {R438 }}$	Sane as R386			
${ }^{\text {R439 }}$	Resistor, Fixed, Film, 4.7k ohn, $58,1 / 4 \mathrm{~N}$		R.L074472J	202-0472
R440	Resistor, Fixed, Film, 12 K Ohm, 5%, 1/4W		Re075123	202-012
R441	Resistor, Fixed, Film, 22M Ohm, 5\%, 1/4W		RLOTS226T	202-0226
R442	Resistor, Fixed, Film, 470 Ohm, 5\%, 1/4W		R.07547]	202-0471
R443	$68 \mathrm{ohm}, 58,1 / 4 \mathrm{~N}$ Resistor, Fixed; Film,		R.L076889	202-0680
R444	Same as R442			
R445	Resistor, Fixed, Film, 130 Ohm, 5\%, 1/4W		RLL075131J	202-0131
R446	Sane as R439			
844	Same as R440			
8448	Sane as R441			
R449	Same as R442			
R450	Sane as R243			
R451	Sane as R442			
R452	Sane as R445			

REFERENCE DESIGNATION A300, D33-329, REV. F CONTINUED TERLAL, METER CONTROL ASSEMBLY,
Description
Same as R426
Same as R426
Resistor, Fixed, Film,
lOK Ohm, 18
Same as R455
Same as R378
Same as R378
Same as R440
Same as R378
Same as R377
Same as R378
Same as R401
Resistor, Fixed, Film,
330 Ohm, 5%, 4 W
Transformer, Audio,
1500 Ohm P, 600 Ohm S
Same as T301
Integrated Circuit, Quad Op-Amp
Same as U301
Sal
 R LIST
R453
R454
R455
R456 thru
R458
R461
R462
R463
R464
R465
R466
R467
R468
T301
T302
U301
U302

$$
\begin{aligned}
& \text { A300, D33-329, } \\
& \begin{array}{l}
\text { Manufacturer } \\
\text { Part No. } \\
\text { 'TL082CP } \\
\text { MC3302P } \\
\text { MC1455P1 } \\
\text { ICO-308-SGT }
\end{array} \\
& \hline
\end{aligned}
$$

REV. F CONTINUED

7.6	ATERIAL, DECODER ASSEMBLY, REFER	DESTGNATION	D33-332, REV. N	,
Reference Designation	Description	Manufacturer	Manufacturer Part No.	Delta Order No.
C50.1	Capacitor, Fixed, Ceramic, Disc, $6.8 \mathrm{PF}, 500 \mathrm{~V}, \mathrm{NPO}$	Sprague	10TCC-V68	312-0015
C502	Same as C501	-		
C503	Capacitor, Fixed, polyester Film, . 047 uF, 100V	Nichicon	QYA2A473K	330-0020
C504	Same as C503			
C506	Capacitor, Fixed, Polyester Film, . 01 uF, 100V	Nichicon	QYA2A103K	330-0015
C508	Capacitor, Fixed, Monolithic, Ceramic, . 47 UF, 50V	Sprague	1C20Z5U474M050B	310-0052
C509	Capacitor, Ceramic, $10 \mathrm{PF}, \mathrm{NPO}$	Sprague	10TCC-Q10	312-0016
C510	Same as C503			
C512	Capacitor, Fixed, Ceramic, Disc, 56 PF, lKV, NPO	Sprague	10TCC-Q56	312-0019
C513	Same as C512			
C514	Capacitor, Fixed, Polyester Film, .001 uF, 100V	Nichicon	QYA2Al02K	330-0012
C515	Same as C514			
C516	Capacitor, Fixed, Polyester Film, . 1 uF, 100V	Nichicon	QYA2A104K	330-0021
C517	Same as C516			
C518	Same as C514			

NUED
Delta
Order No.

 MMWO5W1-20
MKC.1860-568/01
5GA-D.10
196D475X9035JA1 10TCC-Q33 A.500, DESIGNATION A

Cornell-
Dubilier
Roederstein

0
$\stackrel{0}{0}$
0
0
0
0
ตวNEMB TB

Capacitor, Fixed, Polyester,
Tubular, $1.0 \mathrm{UF}, 50 \mathrm{~V}$
Capacitor, Fixed, Metalized, Polycarbon, $5.3 \mathrm{uF}, 100 \mathrm{~V}$ Capacitor, Fixed, Ceramic, Capacitor, Fixed, Tantalum,
$4.7 \mathrm{uF}, 35 \mathrm{~V}$ $4.7 \mathrm{uF}, 35 \mathrm{~V}$ Same as C530 Same as C527 Capacitor, Fixed, Ceramic,
Disc, $33 \mathrm{PF}, 1 \mathrm{KV}, \mathrm{N} 075$ Disc, $33 \mathrm{PF}, 1 \mathrm{KV}$, N075 Same as C530 Same as C539 Same as C530 Same as C503 Same as C530 Same as C506 Reference
Designation 3
$\underset{y}{5}$ $C 519$
$C 520$ N
7.6

7.6	MATERIAL, DECODER ASSEMBLY, REFERENCE DESIGNATION A500, D33-332, REV. N CONTINUED			
Reference Designation	Description	Manufacturer	Manufacturer Part No.	$\begin{aligned} & \text { Delta } \\ & \text { Order No. } \end{aligned}$
C546	Same as C506			
C547	Same as C530			
C548	Capacitor, Fixed, Ceramic Disc, $100 \mathrm{PF}, 1 \mathrm{KV}, \mathrm{N} 750$	Sprague	10TCC-T10	312-0021
C549	Same as C548			
C553	Capacitor, Fixed, .0047 UF, 100V, 1\%	$S \& E I$	22RB472F	330-0031
$\begin{aligned} & \text { C554 thru } \\ & \text { C556 } \end{aligned}$	Same as C553			
C557	Same as C503.			
C558	Capacitor, Fixed, Monolithic, Ceramic, .l uF, 50V	Sprague	1C20Z5U104M050B	310-0051
C559	Same as C506			
C560	Same as C503			
C561	Capacitor, Fixed, Mica, $180 \mathrm{PF}, 5 \%$, 500V		CM05ED181.J03	302-0181
C564	Same as C553			
C565	Same as C553			
C566	Same as C508			
C568	Same as C503			
C569	Same as C558			

Delta
Order No．

 CM05CD331J03
$5.13-011 G 7-40$
1 M1149
MV1404 73？？？？per N
Manufacturer
Part No． OYA2A182K QYA2A182K
 A50n： DFSTGNATTON A
Manufacturer Nichicon
Tusonix
Motorola ONNGHAd Description
Same as C503
Same as C503
Same as C503
Same as C530
Same as C539
Same as C539
Capacitor，Fixed，polyester
Film， 1800 PF， 100 V
Same as C539
Same as C558
Capacitor，Fixed，Mica， 5%
Capacitor，Fixed，Silver Mica，
330 PF， 5% ，500V
Same as C508
Capacitor，Variable，Ceramic，
$7-40$ PF
Diore，：ilicon
Diode，Varactor
Same as CR50l ¢世ヶう！
78
Reference
Designation
thru

N

艺

7.6 LIST	ATERIAL, DECODER ASSEMBly, ref	DESIGNATION	D33-332, REV.	
Reference Desianation	Description	Manufacturer	Manufacturer Part No.	$\begin{aligned} & \text { Delta } \\ & \text { Order No. } \end{aligned}$
0514	Same as Q503			
R501	Resistor, Variable, lok Ohm	Bourns	3005x-1-103	24-0030
R502	Resistor, Variable, 500k Ohm	Bourns	3006P-1-504	244-0079
$R 503$	Resistor, Variable, 100 ohm	Bourns	3006P-1-101	244-0070
R504	Same as R503			
R505	Same as R503			
8509	Resistor, Fixed, Film, 270 Ohm, 5\%, 1/4W		R0075271J	202-0271
nos 10				
いい1.	ressislul, fixeu, ilim, 1K Ohm, 5\%, 1/4W			200.0102
8512	Resistor, Fixed, Filin, $332 \mathrm{Ohm}, 1 \%$, l/4W		RN5503320E	21.2-3320
R513	Same as R511			
251.4	Same as R5. 22			
1310	kesiscor, Hixed, kill, 1.3K Ohm, 5\%, 1/4W			202-0132
R516	Same as R515			
R517	Resistor, Fixed, Filin, $100 \mathrm{Ohm}, 5 \%$, $1 / 4 \mathrm{~W}$		RL07S 101 J	202-0101
R518	Same as R511			

NUED
Delta
Order No.

$\begin{array}{ll}\text { N } & \text { J } \\ \text { N } & \text { N } \\ \text { N } & \text { N } \\ \text { N } & \text { N }\end{array}$

Reference Designation	Description	Manufacturer	Manufacturer Part No.	$\begin{aligned} & \text { Delta } \\ & \text { Order No. } \end{aligned}$
R534	Same as R531			
R535	Same as R523			
R536	Same as R523			
R537	Resistor, Fixed, Film, $820 \mathrm{Ohm}, 5 \%, 1 / 4 \mathrm{~W}$		RL07S821J	202-0821
R538	$\begin{aligned} & \text { Resistor, Fixed, Film, } \\ & 750 \text { Ohm, } 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$		RL07S751J	202-0751
R539	Same as R537			
R540	Resistor, Fixed, Film, $5.1 \mathrm{~K} \mathrm{ohm}, 5 \%, 1 / 4 \mathrm{~W}$		RL075512J	202-0512
R541	Resistor, Fixed, Film, 1.5K Ohm, 5\%, 1/4W		RL07S162J	202-0162
R542	Resistor, Fixed, Film, $2.4 \mathrm{~K} \text { Ohm, } 5 \%, 1.4 \mathrm{~W}$		RL07S242J	202-0242
R543	Same as R542			
R544	$\begin{aligned} & \text { Resistor, Fixed, Film, } \\ & 470 \mathrm{Ohm}, 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$		RL07S471J	202-0471
R545	Same as R544			
R546	Resistor, Fixed, Film, $3.6 \mathrm{~K} \mathrm{Ohm}, 5 \%, 1 / 4 \mathrm{~W}$		RL07S362J	202-0362
R547	Resistor, Fixed, Film, 2.7K Ohm, 5\%, 1/4W		RL07S272J	202-0272
R548	Same as R547		I:	

7.6 LIST	ERIAL, DECODER ASSEMBL	DESLGNATION A	332, REV.	
Reference Designation	Description	Manufacturer	Manufacturer Part No.	$\begin{aligned} & \text { Delta } \\ & \text { Order No. } \end{aligned}$
R549	Resistor, Fixed, Film, 4.7K Ohm, 5\%, 1/4W		RL07S472J	202-0472
R550	Same as R547			
R551	Resistor, Fixed, Film, 12K Ohm, 5\%, 1/4W		RL07S123J	202-0123
R552	Same as R547			
R553	Same as R541			
R554	Same as R551.			
R555	Same as R547			
R556	Same as R547			
R557	Resistor, Fixed, Film, 27K Ohm, 5\%, 1/4W		RL07S273J	202-0273
R558	Same as R557			
R559	Resistor, Fixed, Film, 56K Ohm, 5\%, 1/4W		RL07S563J	202-0563
R560	Same as R559			
R56.1	Same as R5.31			
R562	Resistor, Fixed, Film, 82K Ohm, 5\%, l/4W		RL07S823J	202-0823
R563	$\begin{aligned} & \text { Resistor, Fixed, Film, } \\ & 2.2 \mathrm{M} \mathrm{Ohm}, 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$		RL07S225J	202-0225

Reference Designation	Description	Manufacturer	Manufacturer Part No.	Delta Order NO.
R564	Same as R511			
R565	$\begin{aligned} & \text { Resistor, Fixed, Film, } \\ & \text { l. } 2 \mathrm{~K} \text { Ohm, } 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$		RL07S122J	202-0122
R556	Same as R523			
R567	Same as R523			
R568	Resistor, Fixed, Film, 3.3K Ohm, 5\%, l/4W		RL07S332,	202-0332
R569	Resistor, Fixed, Film, 910K Ohm, 5\%, 1/4W		RL07S914J	202-0914
R570	Resistor, Fixed, Film, 62k Ohm, 5\%, 1/4W		RL07S623J	202-0623
8571	Resistor, Variable, 5K Ohrn,	Bourns	$3006 \mathrm{P}-1-502$	244-0019
R572	Same as R568			
(aio				
R574	Resistor, Fixed, Film, 270K Ohm, 5\%, 1/4W		RL07S274J	202-0274
R575	Resistor, Fixed, Film, 43k Ohm, 5\%, l/4W		RL07S433J	202-0433
R576	Same as R559			
R577	Same as R557			
R578	Same as R557			
R579	Same as R559		4	

もLbO-zOZ

RL07S510J ctlusloted

LIST OF MATERIAL, DECODER ASSEMBLY, REFERENCE

Same as R547
Same as R547
Same as R547
Same as R559
Same as R557
Same as R557
Same as R559
દZ૬y se aures
Same as R523
Same as R528
Resistor, Fixed, Film, Resistor, Fixed, Film,
51 Ohm, $5 \%, 1 / 4 \mathrm{~W}$

Same as R531 Same as R531 Same as R528 Same as R539 Same as Same as R541 Resistor, Fixed, Film, 470K Ohm, 5\%, $1 / 4 \mathrm{~W}$ Same as R523

Same as R523

7.6
Refer
Design

R580
R581
R582
R583
R584
R585
R586
R587
R588
R539
R590
R591 R592 $R 593$ R594 R595
R596

N
N
O
N
N
-3
0
0
1
0
0 RL07S222J
 D33-332, REV.
Manufacturer
Manufacturer
Part No.
A500,
LIST OF MATERLAL, DECODER ASSEMBLY, REFERENCE DESIGNATION AS
Manufacturer
Description
Same as R528
Same as R541
Same as R531
Same as R526
Same as R526
Same as R522
Same as R526
Same as R526
Same as R522
Resistor, Fixed, Film,
$2.2 M$ Ohm, 5%, 4 W
Same as R607
Same as R533
Same as R533
Same as R528
Resist:or, Fixed, Film,
51.1 Ohm, 1%
Same as R612
Same as R507
Same as R549

R608
R609 R510
 $R 613$
$R 614$
$R 615$ 7.6
Ref
Desi
Ro07
Delta

Order NO.
$202-0682$
$202-0391$

Manufacturer
Part No.

RL07S682J
RL07S391J

REFERENCE
LIST OF MATERIAL, DECODER ASSEMBLY,
7.5 LIST
Reference
Designation
 $R 618$
$R 619$
$R 620$
$R 621$
$R 622$
$R 623$ R 524 R625 R626
thru
 7-42

D33-332, REV. N CONTINUED
Delta
Order No.

0
0
0
1
i

 051-0045-001 051-0045-002 3
0
1
1
0
8
1
1
3

0 | $\begin{array}{c}\text { Manufacturer } \\ \text { Part No. }\end{array}$ |
| :---: |
| 筑 | TL084CN MC1495L MC10116L

CA3183E
MC10131L
 A500, DES.IGNATION
 0
0
0
0
0
0
0 Motorola
RCA
Motorola

TERIAL, DECODER ASSEMBLY, RE
Description
Integrated Circuit,
Quad Op-Amp, 14 Pin
Same as U503
Integrated Circuit,
Modulator, 14 pin
Same as u501
Same as u501
Same as U505
Same as U505
Integrated Circuit, Triple
Line Receiver, 16 Pin
Integrated Circuit,
Transistor Array, 16 pin
Integrated Circuit, Dual D
Flip-Flop, 16 Pin
Same as U512
Jumper, Coaxial
Jumper, Coaxial
Jumper, Coaxial
Jumper, \#22 AWG, Bus wire,
Teflon Tubing
LIST OF

$$
\begin{gathered}
\begin{array}{c}
\text { Reference } \\
\text { Designation }
\end{array} \\
\text { XC589 } \\
\text { Y501 }
\end{gathered}
$$

$$
\begin{aligned}
& \text { ATERTAL, DECODER ASSEMBLY, REFERENCE } \\
& \text { Description } \\
& \begin{array}{l}
\text { Socket, Spring, } 0.036-0.051 \\
\text { Dianeter } \\
\text { Crystal, } 3.6 \mathrm{MHz}, \mathrm{HC}-6 / \mathrm{U}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { DESIGNATION A500, } \\
& \text { Manufacturer } \\
& \text { Amp } \\
& \text { Delta }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Manufacturer } \\
\text { Part No. }
\end{array} \\
& \hline 380598-3 \\
& \text { D05-1.10-37 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { UED } \\
& \begin{array}{l}
\text { Delta } \\
\text { Order No. } \\
736-0042 \\
005-0110-037
\end{array}
\end{aligned}
$$

0
0
0
0
0
0
葴
\vdots
$\vdots$$\begin{gathered}\text { Manufacturer } \\ \text { Part No. }\end{gathered}$
CM05FD181J03
5GA-D10
1C20Z 50104 M050B
 OM05ED330J03
DVIIPR18A
QYA2A473K
QYA2A103K

m
-
1
1
-
-

bele

5GA-D10310$\begin{array}{ll}0 & \text { N } \\ \text { N } & \text { - } \\ \text { i } & \text { i } \\ \text { i } & 1 \\ \text { j} & \text { M } \\ & \text { m }\end{array}$

 ASSEMBLY, SYNTHESIZED,
 $\tau \cdot L \cdot L$
Same as C 717

Description

Capacitor, Fixed, Ceramic,
Disc, . 001 uF, 1000 V
Sprague
Sprague
$\stackrel{\#}{-}$ Nren
1C20Z5U104M050B

Nichicon
Nichicon
Erie
Nichicon
Nichicon

REFERENCE DESIGNATION A700, D33-324-1 AND ASSEMBLY, SYNTHESIZED,

Manufacturer
Part No.

RL07S103J
RL07S122J
RL07S392J

Delta
Order No.
$202-0681$
$202-0912$

0	6
-	N
0	0
1	1
1	∞
$i n$	

0
8
0
1
1
in
in 736-0039 $\begin{gathered}\text { Manufacturer } \\ \text { Part No. }\end{gathered}$
RL07S681J
RL07S912J

Grayhill
Motorola
Motorola
Motorola
Motorola
Motorola
Motorola
Samtech Z-山-0ZT-SS 9TIOTDW
日®ZODTDW
JOFOZTDW
ITETOTDW MC10136L 76SB08S
MC1496L n
0
8
1
1
1
n 6
0
0
0
1
0
0
0

\section*{| N |
| :--- |}

\section*{| ∞ |
| :--- |
| 0 |
| |
| 1 |
| $\underset{0}{1}$ |}

D33-324-3
DESIGNATION A700, RFFERENCE NON-SYNTHESIZED, LIST OF MATERIAL, FREQUENCY CONVERTER ASSEMBLY,

302-0181
m
0
0
1
1
-
m
-1
0
0
1
1
-1

330-0020

n
$\stackrel{n}{8}$
i
i

Manufacturer
Part No.

CM05FD181J03
$5 G A-D 10$
$1 C 20 Z 5 U 104 M 050 B$

QYA 2A 473 K
QYA2A103K
10TCC-T 33
10TS-T 33
Sprague
Sprague
Erie
Sprague

Same as $\mathbf{C 7 2 0}$
7.7 .2

C704
C705
$C 707$
$C 708$
$C 709$
$C 710$
$C 713$
$C 714$
$C 716$ $C 717$
$C 718$
$C 720$
DESIGNATION A700, D33-324-3
REFERENCE
$\begin{array}{r}\begin{array}{r}\text { Manufacturer } \\ \text { Part No. }\end{array} \\ \hline 10 \text { TS-T22 }\end{array}$
$410-4148$
$005-0130$
$364-0007$
$005-0128$
$350-0031$
$436-0002$
$426-0008$
202-0391
202-0561
$\underset{\sim}{-1}$
0
O
N
N
O
N
O
I
O
N
$\begin{gathered}\text { Delta } \\ \text { Order No. }\end{gathered}$
$312-0022$ Manufacturer
 AND D33-324-4, REV. N CONTINUED

Capacitor, Fixed, Ceramic,
Disc, 220 PF

RL07S821J
RLO7S220J
D33－324－3
DESIGNATION A700，D
GONTMA

Manufacturer Part NO．
RL07S331J
RL07S680J
RL07S154J
RL07S102J
RL07S 472 J
RL07S 122 J
RL07S 473 J

Resistor，Fixed，Film，
330 Ohm， $5 \%, 1 / 4 \mathrm{~W}$
Resistor，Fixed，Film，
68 Ohm， $5 \%, 1 / 4 \mathrm{~W}$
Same as R707
Resistor，Fixed，Film，
150K Ohm， $5 \%, 1 / 4 \mathrm{~W}$
Resistor，Fixed，Film，
lk Ohm， $5 \%, 1 / 4 \mathrm{~W}$
Resistor，Fixed，Film，
4.7 K Ohm， $5 \%, 1 / 4 \mathrm{~W}$
Same as R703
Same as R712
Resistor，Fixed，Film，
l． 2 K Ohm， $5 \%, 1 / 4 \mathrm{~W}$
Resistor，Fixed，Film，
47 K Ohm， $5 \%, 1 / 4 \mathrm{~W}$
Same as R709
Same as R709
Same as R712
Resistor，Fixed，Film，
47 Ohm， $5 \%, 1 / 4 \mathrm{~W}$
R706
R707
R708
R711
R712
R714
R716
R717
R719

R725
R726
R726
R727
R728
R731

202－0912 | 0 | 0 | n |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 8 | 8 |
| 0 | 0 | 0 |
| 1 | 1 | 1 |
| ∞ | 6 | 0 |
| | n | $i-1$ |

736－0025

Delta
Order No．

$202-0181$
$202-0681$
$202-0912$

Description
Same as R719
Same as R704

Motorola
Motorola Motorola Samtech Samtech LIST OF MATERIAL，FREQUENCY CONVERTER ASSEMBLY， LIST D33－324－4，REV．N CONTINUED Reference
Designation R732
R733
R734
R735 R736
U701
U704 0707 Wire，Bus，\＃22 AWG Teflon Sleeving
Integrated Circuit，
Type D，Master Slave Flip－Flop Integrated Circuit， Triple Line Receiver Socket， 6 Pin DIP Socket，IC， 14 Pin DIP Same as XU 702 Same as XU 702 Socket，0．036－0．051 Dian． 7.7 .2

7.8				
Reference Designation	Description	Manufacturer	Manufacturer Part No.	Delta Order No.
R839	Resistor, Fixed, Film, $82 \mathrm{Ohm}, 5 \%$, 2 W		RL.42S820J	208-0820
R840	Resistor, Fixed, Film, 82 Ohm, 5\%, 1/4W		RL07S820J	202-0320
R841	Same as R840			
R842	Same as R840			
R844	Resistor, Fixed, Film, 100 Ohm, 5\%, 2W		RL42S101J	208-0101
R845	Resistor, Fixed, Film, 51 Ohm, 5\%, 1/2W		RL20S510J	204-0510
R846	Same as R845			
R 847	Same as R845			
R848	Resistor, Fixed, Film, 33 Ohm, 5\%, 1/4W		RL07S330J	202-0330
R857	Same as R348			
S803	Switch, Rotary	Centralab	PA7007	662-0024

$544-0003-015$
$544-0003-005$
REFERENCE DESIGNATION A900, D33-330, REV. H Manufacturer
Part No.
TC50200
QYA2A104K QYA2A104K
TE-1202
IN4720
 Manufacturer Mallory Nichicon Sprague
Motorola $\begin{array}{ll}\overrightarrow{~ H} & \vec{~} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ & 0\end{array}$ LIST OF MATERIAL, POWER SUPPLY ASSEMBLY, R Description
Capacitor, Fixed, Electrolytic,
2000 UF, 50 VDC
Same as C900
Capacitor, Fixed, Film,
. 1 uF, $10 \%, 100 \mathrm{~V}$
Same as C902
Same as C900
Same as C902 Capacitor, Fixed, Electrolytic, Diode, Silicon, Rectifier Same as CR900
Same as CR900
Same as CR900
Voltage Regulator,
$+15 \mathrm{~V}, 1.5 \mathrm{~A}, \mathrm{TO}-220$ Case
Voltage Regulator, +5 V ,
$1.5 \mathrm{~A}, \mathrm{TO}-220$ Case $\stackrel{9}{i}$

C900 $\begin{aligned} & \text { Reference } \\ & \text { Designation }\end{aligned}$
C901
C902
C904
C905
C908
C909
CR900
CR901 thru
CR905
CR907
CR908
VR900
VR901

7.10 LIS	1ATERIAL, SWITCH PANEL ASSEMBL	T, REFERENCE D	TION Al, D33-327,	
Reference Designation	Description	Manufacuturer	Manufacturer Part No.	Delta Order No.
R803	Resistor, Fixed, Film, 2. 21 K Ohm, 1\%, $1 / 4 \mathrm{~W}$		$\begin{aligned} & \text { RN55D221lF } \\ & \text { CCF552211F } \end{aligned}$	212-2211
R805	Resistor, Fixed, Film, 681 Ohm, 1\%, 1/4W		RN5506810F CCF556810F	212-6810
R807	Resistor, Fixed, Film, 221 Ohm, 1\%, 1/4W		$\begin{aligned} & \text { RN55D2210F } \\ & \text { CCF552210F } \end{aligned}$	212-2210
R809	```Resistor, Fixed, Film, 68.1 Ohm, 1%, 1/4W```		RN55D68R1F CCF5568RIF	212-0681
R811	Resistor, Fixed, Film, 22.1 Ohm, 1\%, 1/4W		RN55D22R1F CCF5522R1F	212-0221
R813	Resistor, Fixed, Film, $10.0 \mathrm{Ohm}, 1 \%, 1 / 4 \mathrm{~W}$		RN55D10R0F OCF5510ROF	212-0100
R817	Resistor, Variable, 5K Ohm	Piher Murata	$\begin{aligned} & \text { PT15ZB-5K } \\ & \text { RVA-1214H-102-10- } \\ & 502-M \end{aligned}$	
SW1	Switch Assembly, 12 Position, DPDT	Delta	D05-113-2	005-0113-002
SW2 thru SW12	Same as SWl			

7.11				
Reference Designation	Description	Manufacuturer	Manufacturer Part No.	\qquad Order No.
R804	Resistor, Fixed, Film, 2.21K Ohm, 1\%, 1/4W		$\begin{aligned} & \text { RN55D2211F } \\ & \text { CCF552211F } \end{aligned}$	212-2211
R806	Resistor, Fixed, Film, 681 Ohm, 1\%, 1/4W		$\begin{aligned} & \text { RN55D6810F } \\ & \text { CCF556810F } \end{aligned}$	212-6810
R808	Resistor, Fixed, Film, 221 Ohm, 1\%, 1/4W		$\begin{aligned} & \text { RN55D221 OF } \\ & \text { OCF552210F } \end{aligned}$	212-2210
R810	Resistor, Fixed, Film, $68.1 \mathrm{Ohm}, 18,1 / 4 \mathrm{~W}$		$\begin{aligned} & \text { RN55D68R1F } \\ & \text { CFF5568R1F } \end{aligned}$	212-0681
R812	Resistor, Fixed, Film, 22.1 Ohm, 1\%, l/4W		$\begin{aligned} & \text { RN55D22R1F } \\ & \text { CCF5522R1F } \end{aligned}$	212-0221
R814	Resistor, Fixed, Film, 10.0 Ohm, 1\%, 1/4W		$\begin{aligned} & \text { RN55D10R0F } \\ & \text { CCF55IOROF } \end{aligned}$	212-0100
R818	Resistor, Variable, 5K Ohm	Piher Murata	$\begin{aligned} & \text { PT15ZB-5K } \\ & \text { RVA-1214H-102-10- } \\ & 502-\mathrm{M} \end{aligned}$	
R819	Resistor, Fixed, Film, 56 Ohm, 5\%, 1/4W		RL07S560J	202-0560
R820	Resistor, Fixed, Film, 24 Ohm, 5\%, 1/4W		RL07S240J	202-0240
SWl	Switch Assembly, 12 Position, All DPDT	Delta	D05-113-1	005-0113-001
SW2 thru SW12	Same as SWl			
W1	Jumper, \#22 AWG Bus Wire, Teflon Sleeving			

$\forall \cdot \Lambda \exists$

 goootassny IS02135
298
TFT200-22 SDNGy

$$
7.12
$$ S804, S805, D34-69,

$\begin{array}{r}\text { Manufacturer } \\ \text { Part No. }\end{array}$
RN55D1001F
RN55D3010F
RN55D4020F
RN55D1000F

-

RN55D30RIF RN55D40R2F RN55DIOROF

 Manufacturer$\begin{gathered}\text { Reference } \\ \text { Designation }\end{gathered}$
R801
R802
R803
R804
R805
R805
R807
R808
R809
S801
W801
W802
XW801
XW802

Manufacturer
Part No.

0805C101BKDZU00
GRM40NPO101K50VPB

QYA2A473K
C5A223G
1812C102BKDZU00
GRM422NPO102K50VPB
C5A222F.
QYA2A104J
MKT-1822-510-6-5

7.13 LTS	MATERIAL, DECODER II ASSEMBLY, D33-	3, REV. A
Reference Designation	Description	Manufacturer
C501.	Capacitor, Fixed, Chip, 100 PF, 10\%, NPO, 50V, Pretinned	RMC Murata-Erie
C 502	Same as C501	
C503	Capacitor, Fixed, Polyester, 0.047 uF, 10\%, 100V	Nichicon
C504	Same as C503	
C508	Same as C501	
C510	Same as C503	
C512	Capacitor, Fixed, Polycarbonate, 0.022 uF, 2%, 50V	Elpac Compone
C513	Capacitor, Fixed, Chip, 0.001 uF, 10%, NPO, 50V, Pretinned	RMC Murata-Erie
C514	Capacitor, Fxed, polycarbonate, 0.0022 UF, 1\%, 50V	Elpac Compone
C 515	Same as C514	
C515	Capacitor, Fixed, polyester, 0.1 uF, 5\%, 100V	Nichicon
C517	Same as C516	
C518	Same as C514	
C519	Same as C514	
C524	Capacitor, Fixed, Mylar, 1.0 uF, 10\%, 63V	REI

M
0
0
1
m

10TCC－T10

N
0
1
N
N

응
$\stackrel{0}{0}$
1
1

n
$\stackrel{n}{8}$
i
i
en

QYA2A103K
LIST OF MATERIAL，DECODER II ASSEMBLY，D33－363，REV．A CONTINUED

RMC
Murata－Erie
Sprague
Elpac Components
Nichicon

Murata－Eria
Sprague
Elpac Components

EOGD se aues
Same as C514
Same as C503
Same as C503 Same as C514
Capacitor，Fixed，Chip， Capacitor，Fixed，Polyester， $6.8 \mathrm{uF}, 5 \%, 63 \mathrm{~V}$
Same as C514
Same as C503
Same as C503

Capacitor，Fixed，Ceramic Disk， $100 \mathrm{pF}, 5 \%$ ，NPO， 500 V Same as C543 Capacitor，Fixed，Polypropylene，
$0.0047 \mathrm{uF}, 1 \%, 50 \mathrm{~V}$ $0.0047 \mathrm{UF}, 1 \%, 50 \mathrm{~V}$
Same as C553 Same as C503 Capacitor，Fixed，Polyester，

$0.01 \mathrm{uF}, 10 \%, 100 \mathrm{~V}$ | $\begin{array}{l}\text { Reference } \\ \text { Designation }\end{array}$ |
| :--- |
| 525 |

thru
7.13
Refer
Desig

6ESD
VESD
EESD
$0 \varepsilon G D$
LZSD
$C 540$
$C 541$
$C 542$
$C 548$ ぶ心 $C 554$
$C 556$

C 557
C 559

 $\begin{array}{r}\text { Manufacturer } \\ \text { Part No. } \\ \hline\end{array}$
7.13 LIST OF MATERIAL, DECODER II ASSEMBLY, D33-363, REV. A CONTINUED

LIST
Reference
Designation

Same as C553
Same as C553
Same as C503
Same as C503
Same as C503
Same as C503

Same as C539
Nichicon
Mallory
Nichicon
Sprague
QYA2A182K

SXK 333

QYA2A102K 80GOWFLENSZOZDT Manufacturer

Same as C503 Capacitor, Fixed, Mica, 180 pF, 5\%, 500 V

Same as C561
Same as C 553
Same as C553

C 584
C 585
C 586

$C 584$
C 585
C 586

C 584
C 585
C 586

$\begin{array}{ll}\text { ion } \\ 0 & \text { © } \\ 0 \\ 0\end{array}$
$C 588$
C590
$C 565$
$C 568$
C565 C 562
C 564

-

$\begin{gathered}\text { Manufacturer } \\ \text { Part No. }\end{gathered}$
$10 T C C-Q 33$
LIST OF MATERIAL, DECODER II ASSEMBLY, D33-363, REV. A CONTINUED
${ }^{2.1 .}$
 Manufacturer

Sprague

Ceramic Disk,
豪 C605

c507 C508 C508
c609 Same as C514
Same as C514 Same as C503
Same as C514 Same as C503
Same as C514 Same as C514
Capacitor, Fixed, Polyester,
0.022 uF, $10 \%, 100 \mathrm{~V}$ Same as C514
Same as C514 Same as C514
Same as C503 Same as C514 Same as C503 Same as C512
Same as C512 Capacitor, Fixed,
$33 \mathrm{pF}, 1 \mathrm{KV}, \mathrm{N} 075$ $33 \mathrm{pF}, 1 \mathrm{KV}$, NO75 Same as C503 Same as C501 Same as C501 Capacitor, Fi
0.022 uF, 10% Nichicon QYA2A223K

$X X X X-Z 0 \varepsilon$
$\boxed{7000-8 T \varepsilon}$

LIST OF MATERIAL, DECODER II ASSEMBLY, D33-363, REV. A CONTINUED
$\frac{\text { Manufacturer }}{\text { Nichicon }}$
Sprague
$\stackrel{0}{3}$
$\stackrel{0}{0}$
$\stackrel{0}{0}$
0
0
10TCC-Q10

Same as C501

Same as C50l

 $5 \%, 500 \mathrm{~V}$, value

> Description Capacitor, Fixed, Electrolytic, $3.3 \mathrm{uF}, 20 \%$, 50 V Same as C615
Same as C617
Same as C512
Same as C539
Same as C539
${ }^{2,18}$
Reference

Designation

C627 thru
C631
C 625
C62 6
C632
C633 thru
C637
3
号 C637 C640

C641
C642

Delta Part No.
$346-0002$
$410-4148$
$416-0017$
$388-0002$
$654-0072$
$352-0030$
$352-0029$
$352-0031$
$352-0034$
$426-0009$

Reference Designation	Description	Manufacturer	Manufacturer Part No.
C643	Capacitor, Variable, Ceramic, $7-40 \mathrm{pF}$	Tusonix	513-01167-40
CR501	Diode, Silicon, Signal		1N4148
CR503	Diode, Varactor	Motorola	MV1404
$\begin{aligned} & \text { CR504 thru } \\ & \text { CR508 } \end{aligned}$	Same as CR501		
Fl	Inductor, Ferrite Bead	Stackpole	57-0181
$\begin{aligned} & \text { F2 thru } \\ & \text { F18 } \end{aligned}$	Same as Fl		
K501	Relay, SPST, 24V, SIP	Gordos	741A7
L501	Inductor, Variable	Bel-Tronics	BT82-0523
L502	Inductor, Variable	Bel-Tronics	BT82-0522
L503	Inductor, Variable	Bel-Tronics	BT83-0638
L504	Same as L503		
L505	Same as L503		
L506	Inductor, Variable	Bel-Tronics	BT84-0726
Q501	Transistor, PNP	Motorola	MPS6517
Q502	Same as Q501		
Q503	Transistor, NPN	Motorola	MPS6513
Q504	Same as Q503		

Reference Designation	Description	Manufacturer	Manufacturer Part No.
Q509	Transistor, EET	Motorola	$\begin{array}{r} \text { U310 } \\ \text { J310 } \end{array}$
Q510	Same as Q503		
Q511	Same as Q501		
Q512	Same as Q501		
Q513	Same as Q509		
Q514	Same as Q503		
R501	Resistor, Variable, 10K Ohm, 25 Turn, Cermet	Bourns	3299Y-001-103
R502	Resistor, Variable, 500K Ohm, 25 Turn, Cermet	Bourns	3299Y-001-504
R503	Resistor, Variable, 100 Ohm, 25 Turn, Cermet	Bourns	3299Y-001-101
R504	Same as R503		
R505	Resistor, Variable, 500 Ohm, 25 Turn, Cermet	Bourns	3299Y-001-501
R509	Resistor, Fixed, Film, 267 Ohm, 1\%, 1/4W		RN55D2670F
R510	Same as R509		
R511	Resistor, Fixed, Film, $475 \mathrm{Ohm}, 1 \%, 1 / 4 \mathrm{~W}$		RN55D4750F

	$\begin{aligned} & \text { ત } \\ & \text { N } \\ & \text { त̈ } \end{aligned}$	$\stackrel{\rightharpoonup}{7}$ N N N	च N N N		$\stackrel{\rightharpoonup}{3}$		د N N N

Manufacturer
Part No.

RN55D2741F

Resistor, Fixied, Film,
3.92k o omm, $18,1 / 4 \mathrm{w}$

Resistor, Fixed, Film,
3.01 K omm, $18,1 / 4 \mathrm{~N}$,

Resistor, Fixeed, Film, 1R oim, $18,1 / 4 \mathrm{~N}$ Sane as R 519
Sane as R513
Resistor, Fixed, Film, ${ }^{\text {R.5 }}$. $5 \mathrm{omm}, 18,1 / 4 \mathrm{w} \mathrm{m}$,
 Same as R522
Same as R519 7.13

R512
R513
R514
R515
R516
R517
 R520
R521 R 521
R 522 R523
R524 $R 525$
$R 526$
R51.
R513
R514
R515
R516
R517

	$\begin{aligned} & \overrightarrow{1} \\ & \underset{1}{1} \\ & \underset{\sim}{n} \end{aligned}$	$$	8 $\stackrel{3}{1}$ \cdots \sim	$\stackrel{8}{7}$	$\stackrel{-1}{\infty}$ $\stackrel{1}{1}$ N N	\circ $\stackrel{0}{0}$ 0 i $\underset{N}{1}$	\vec{N} N N N	$\stackrel{\rightharpoonup}{3}$

Reference Designation	Description	Manufacturer	Manufacturer Part No.
R527	```Resistor, Fixed, Film, 1.21K Ohm, 1%, 1/4W```		RN55D121.1F
R528	Same as R512		
R529	Same as R512		
R530	```Resistor, Fixed, Film, 100 Ohm, 1%, 1/4W```		RN55D1000F
R531	```Resistor, Fixed, Film, 750 Ohm, 1%, 1/4W```		RN55D7500F
R532	Resistor, Fixed, Film, 1M Ohm, 1\%, 1/4W		RN55D1004F
R533	Resistor, Fixed, Film, $1.82 \mathrm{~K} \mathrm{Ohm}, 1 \%, 1 / 4 \mathrm{~W}$		RN55D1821F
R534	Resistor, Fixed, Film, 681 Ohm, 1\%, 1/4W		RN55D6810F
R535	Same as R524		
R536	Same as R522		
R537	Same as R527		
R538	Resistor, Fixed, Film, 3.32K Ohm, 1\%, l/4W		RN55D3321F
R539	Same as R519		
R540	Resistor, Fixed, Film, 5.11K Ohin, 1\%, 1/4W		RN550511.1F

$\begin{array}{r}0 \\ 0 \\ 8 \\ 8 \\ \hline\end{array}$

-7 6 6 \vdots \cdots \cdots

 $\begin{array}{lll}-1 & -1 & - \\ N & \vdots & 0 \\ N & N & - \\ i & 1 & N \\ N & N & N \\ N & N & N\end{array}$-6
6
0
1
\cdots
\cdots
\cdots

LIST OF MATERIAL, DECODER II ASSEMBLY, D33-363, REV. A CONTINUED

[^1]\qquad
R558
R559
R560
R561
R562
R563
R56
R564
R565
R566 R567 R567
R568 R569

 RN55D8252F
RL07S225J RN55Dl152F RN55D4322F Manufacturer
Resistor, Fixed, Film,
l. 21 M Ohm, $1 \%, 1 / 4 \mathrm{~W}$ Resistor, Fixed, Film,
61.9 K Ohm, 1%, $1 / 4 \mathrm{~W}$
 Same as R512
Same as R527
Resistor, Fixed, Film,
Resistor, Fixed, Film,
$82.5 \mathrm{~K} \mathrm{Ohm}, 1 \%, 1 / 4 \mathrm{~W}$
Resistor, Fixed, Film,
2.2 $2 \mathrm{Mhm}, 5 \%, 1 / 4 \mathrm{~W}$ 39.2 Ohm, l\%, l/4W

Same as R538
Resistor, Variable,
5 K Ohm, 25 Turn, Cer Bourns

\cdots	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{u} \end{aligned}$
N	
$\stackrel{1}{\text { N }}$	
$\stackrel{\sim}{N}$	

CONTINUED
 atyzzascne

\section*{
 | $-\infty$ |
| :--- |
| 0 |
| 1 |
| 1 |
| |}

O
N

细
c.
N
N
ñ

n
N
N
Ñ

LIST OF MATERIAL, DECODER II ASSEMBLY, D33-363, REV. A CONTINUED

$$
\begin{aligned}
& \text { Description } \\
& \text { Same as R644 } \\
& \text { Same as R530 } \\
& \text { Same as R530 } \\
& \text { Resistor, Fixed, Film, } \\
& 825 \text { Ohm, 1\%, } 1 / 4 \mathrm{~W} \\
& \text { Same as R687 } \\
& \text { Same as R519 } \\
& \text { Same as R522 } \\
& \text { Same as R524 } \\
& \text { Same as R527 } \\
& \text { Resistor, Fixed, Film, } \\
& \text { lok Ohm, } 18,1 / 4 \mathrm{~W} \\
& \text { Resistor, Fixed, Film, } \\
& 39.2 \mathrm{~K} \text { Ohm, } 1 \%, 1 / 4 \mathrm{~W} \\
& \text { Resistor, Fixed, Film, } \\
& 332 \mathrm{~K} \text { Ohm, } 18,1 / 4 \mathrm{~W} \\
& \text { Same as R665 } \\
& \text { Same as R693 } \\
& \text { Resistor, Fixed, Film, } \\
& 221 \mathrm{~K} \text { Ohm, } 1 \%, 1 / 4 \mathrm{~W}
\end{aligned}
$$

7.13
Reference
Designation

63, REV. A CONTINUED
Manufacturer
DECODER II ASSEMBLY, D33-363
LIST OF MATERIAL, DECODER II ASSEMBLY
${ }^{2.13}$
2.13.

National

π		0
\sim		0
0		0
0		0
0		0
0		0
0		0

 Lrst of
 R699
TP501
TP502 thru TP502 thru
TP519 U501 U502 U503 U504 U505 U506 U507 U508 U509 U510 U511 U512. U513 U514

	8	-1 0 1 0 8 8 1 1 1 0	N 8 1 1 8 8 1 1 3 0		N 0 0 1 0	\%

7.13 LIST OF MATERIAL, DECODER II ASSEMBLY, D33-363, REV. A CONTINUED

Manufacturer
Part No.

298
D51-49-1
D51-49-2
$380598-3$
ICO-314-SGT
ICO-308-SGT
ICO-316-SGT

Refererice Designation	Description	Manufacturer
U515	Same as U504	
U516	Same as U511	
W501	Jumper, Wire, Bus, 22 AWG	Alpha
$\begin{aligned} & \text { W502 thru } \\ & \text { W511 } \end{aligned}$	Same as Wl	
W512	Jumper, Coaxial	Delta
W513	Jumper, Coaxial	Delta
XC642	Socket, Spring, 0.018-0.040 DIA	Amp
XU501	Socket, IC, 14 Pin Dip	Samtech
XU502	Same as XU501	
XU503	Same as XU501	
XU504	Socket, IC, 8 Pin Dip	Samtech
$\begin{aligned} & \text { XU505 thru } \\ & \text { XU509 } \end{aligned}$	Same as XU501	
XU510	Socket, IC, 16 Pin Dip	Samtech

LEO-OTIO-S00

EVV. A CONTINUED
Manufacturer
Delta
D05-1.10-37

8.1 LIST OE SCHEMATIC DIAGRAMS

This section contains an overall functional block diagram of the Monitor and schematic diagrams of the major assemblies. The diagrams are presented in the following order.

FIGURE	TITLE	PAGE
8-1	Functional Block Diagram, Model ASM-1 C-QUAM AM Stereo Modulation Monitor	$8-2$
8-2	Schematic Diagram, Power Attenuator Assembly 8-3A	Schematic Diagram, Frequency Converter Assembly (Synthesized)
8-3B	Schematic Diagram, Frequency Converter Assembly (Non-Synthesized)	$8-3$
8-4A	Schematic Diagram, Decoder Assembly	$8-4$
8-4B	Schematic Diagram, Decoder II Assembly (Delta)	$8-5$
8-4C	Schematic Diagram, Decoder II Assembly (Motorola)	$8-6$
8-5	Schematic Diagram, AVC Assembly	$8-7$
8-6A	Schematic Diagram, Pushbutton Switch Assembly, Left	$8-9$
$8-6 B$	Schematic Diagram, Pushbutton Switch Assembly, Right	

FIGURE 8-3A

S801
FIGURE 8-6A
SCHEMATIC DIAGRAM
PUSHBUTTON SWITCH
ASSEMBLY, LEFT

ref des prefix "A900"

[^0]: Reference
 Designation

[^1]: Reference
 Designation

