MODEL AF210-FM FIM/STEREO RECEIVER/MONITOR OPERATION MANUAL

GENERAL:

The Model AF210-FM is a precision FM broadcast receiver with stereo demodulator designed for the most demanding sensitivity, low distortion and best signal to noise requirements. The Model AF210-FM is single channel with PLL (synthesized) tuning. The AF210-FM was designed for professional broadcast requirements, and has applications for FM relay (translator) service, EAS monitoring and paging service.

FEATURES:

- Wide and narrow band AGC to prevent overload
- Balanced and Unbal FM audio (stereo) output
- Composite audio output
- Selectable 50, 75 microseconds, or no de-emphasis
- Selectable 25,50 or 100 KHz (standard) frequency tuning steps
- 500 mW audio amplifier for monitoring
- FM stereo with 46 dB separation
- FM signal strength blend and high cut if desired
- Adjustable level carrier detection relay
- LED indicators for signal strength, power, main carrier, stereo
- Adjustable soft FM mute
- 19 inch rack mount (13/4") chassis

Please Note:

This receiver has been constructed as FM/Stereo only. The IF filters have been narrowed and the composite bandwidth restricted to FM/Stereo. (The RDS and SCA de-modulators are not present. The front panel RDS and SCA indicators do not operate. The front panel SCA/Main switch always provides Main/Stereo operation.)

SPECIFICATIONS:

TUNING RANGE: $\quad 88$ to 108 MHz , selected by internal DIP switch, in 100 KHz steps
ANTENNA INPUT: "F" connector, 75 ohm
With 1 KHz modulation, 75 KHz deviation:
SENSITIVITY: $\quad 0.75 \mathrm{uV}$ (12dB SINAD) Limiting @ <3uV
FREQ RESPONSE: $\quad 20 \mathrm{~Hz}$ to $15 \mathrm{KHz}(-3 \mathrm{~dB})$ DISTORTION: $\quad 0.25 \%$ THD at $100 \% \bmod$ MAXIMUM S/N: 60dB AM REJECTION: 50 dB
INTERMODULATION: 5 mV (73dB) Rejection LINE Outputs: $\quad 1.0 \mathrm{~V}$ RMS, 600 Ohms SPKR Output: SELECTIVITY:

POWER:

SIZE: $\quad 13 / 4 " \mathrm{H}$ x $19 " \mathrm{~W} \times 8$ " D Weight: 5 lbs

DAYTON INDUSTRIAL CORPORATION

2237 Industrial Blvd., Sarasota, Florida 34234 USA
Tel: (941) 351-4454 Fax: (941) 351-6081 E-Mail: daytonindustrial@aol.com
Visit our website at www.daytonindustrial.com

MODEL AF210-FM, FM/STEREO MONITOR/RECEIVER OPERATION MANUAL

1.0 FREQUENCY SETTING:

The first item to be performed is to set the receiver frequency of operation. The receiver is a PLL design, the frequency is set by a series of switches, arranged as internal DIP switches, marked SW1 and SW2.

Access to the switch is by removing the top cover of the receiver. Remove the seven (7) screws and remove the cover.

Locate SW1 and SW2. (See also parts layout diagram Figure 1.0, page 5) The switches are marked indicating the "on" position. The "on" position for a switch is the logical " 1 ", and the "off" position is the logical " 0 " for the receiver microcontroller.

Please note that SW1 positions R 1 and R 2 are always to be in the " 0 " or "off" position.

The frequency of operation is set by the positions of switches D0, D1,...through...D12. Note that the switch "on" position is always the position towards the microcontroller, IC10. The D0 switch position is SW1, switch 4.

Table 1.0 lists the switch position for each switch corresponding to the desired frequency of operation. Set the switches according to Table 1.0, (Page 6), for the desired operating frequency.

Figure 2.0 AF210FM REAR PANEL DIAGRAM

2.0 CONNECTORS/CONTROLS (REAR):

After setting the frequency, the next item is to make the appropriate connections at the receiver rear panel. The connectors (standard) are shown in Figure 2.0. The screwdriver controls are set at the factory and should not be adjusted (except for the SPKR Volume control).
2.1 RF ($88-108 \mathrm{MHz}$): The RF connector is an " F " connector. The input impedance is 75 Ohms . The antenna connection should be coaxial cable to reduce interference. 50 Ohm " N " connector available as option.
2.2 R and L Stereo Outputs (Unbalanced): RCA connectors for unbalanced line outputs from the receiver stereo decoder.
2.3 COMPosite Output: Receiver composite output. An RCA connector (unbalanced) is provided.
2.4 SCA: (Output not present)
2.5 VOL: A screwdriver volume control for the SPKR powered audio output.
2.6 SPKR: RCA connector output for 8 Ohm monitor speaker. The receiver power output is 0.5 Watt .
2.7 DATA: (Adjustment not provided)
2.8 SCA MUTE: (Adjustment not provided)
2.9 RELay: A screwdriver adjustment that sets the input signal level where the carrier detect relay operates. This is factory set at -90 dBm .
2.10 ON: A switch for controlling the input power, $12 \mathrm{VDC}, 300 \mathrm{~mA}$. A front panel power LED will be bright when power is applied.
$2.1112 \mathrm{VDC}, 500 \mathrm{~mA}$: A 2.0 mm connector for applying power, $12 \mathrm{VDC}, 500 \mathrm{~mA}$ to the receiver. A 115 to 12 VDC power converter is supplied to match with this connector. The connector is positive, center pin, 2.0 mm .

MODEL AF210-FM: FM/STEREO MONITOR/RECEIVER OPERATION MANUAL

2.12 SCREW CONNECTOR TERMINALS:

2.12.1 BALANCED STEREO OUTPUTS: Screw terminals are provided for $\mathrm{L}+, \mathrm{L}-, \mathrm{G}, \mathrm{R}-, \mathrm{R}+$. The $\mathrm{L}+, \mathrm{L}-$ terminals are provided for balanced L audio. The screw terminals $\mathrm{R}-, \mathrm{R}+$ provide the balanced R audio output.
2.12.2 NO,NC,COM: Screw terminals for the carrier detect relay outputs. Both NO and NC are referred to the COM terminal.
2.12.3 "S": A screw terminal for monitoring the receiver received field strength indicated as a voltage level. The voltage is measured with a voltmeter and the higher the voltage (0 to 5 VDC), the higher the receiver field strength.

Figure 3.0 AF210FM FRONT PANEL DIAGRAM

3.0 INDICATORS/CONTROLS FRONT PANEL:

3.1 SWITCH SCA or MAIN: A two position front panel switch (operates as MAIN only in this receiver) and selects MAIN audio for application to the rear panel mounted SPKR RCA connector or front panel mounted HDST speaker outputs.
3.2 HDST MONO JACK: A $1 / 4$ inch audio jack for monitoring the MAIN demodulated signals with 8 Ohm headsets. The output is MAIN channel mono, but will be heard in both sides of stereo headsets. The HDST and SPKR outputs are in parallel. The volume control is located on the rear panel, marked VOL. The HDST jack is a $1 / 4$ inch stereo jack.

Do not use a MONO headset plug as the audio will be shorted and damage may result.

3.3 POWER: Red or Green LED that is bright whenever power is applied to the receiver, 12 VDC 500 mA , input power receptacle on the rear panel.
3.4 RELAY: Green LED indicator that is lighted whenever the main carrier relay is active. The relay is set to operate at the factory whenever the received main carrier is above a specified (-90 dBm) level. The NO, NC and COMmon terminals of the relay are provided at the rear panel screw terminal block.
3.5 MAIN SIGNAL LEVEL: Ten element vertical LED indicator that indicates the received signal level. This is adjusted with the lowest element lighted with no signal input. The more elements that are lighted, the higher the received field strength.
3.6 STEREO: Green LED that is bright whenever the received signal contains the stereo pilot. The L and R stereo outputs are active. If the received signal strength is low or the pilot is absent, the L and R outputs are monaural.
3.7 SCA: (Green LED that is present, but does not operate)
3.8 RDS: Green LED that does not function in this receiver.

4.0 INTERNAL JUMPERS/CONNECTORS:

A diagram of the main internal printed circuit board is presented in Figure 1, Page 5. The internal jumper selection descriptions are provided below. The jumpers should be removed and repositioned using a pair of needlenose pliers or similiar device.
4.1 J4, marked " 67 " or " 92 ": (Not used in this receiver)
4.2 J8, marked "DATA", "SCA", "AUDIO": (Not used
in this receiver)
4.3 J 13, " 75 ", "GND"," $50 "$: J13 has two sections, each is a three pin, two position jumper arrangement for selecting the receiver de-emphasis. The normal position for the jumpers is the 75 microsecond de-emphasis position.

[^0]
5.0 MISCELLANEOUS OPERATION:

5.1 MONO ONLY: At times it may be necessary to operate the receiver in MONO, especially in circumstances where the transmitter is at very long distances. To make the adjustment remove the cover and locate the separation potentiometer marked "SEP". Observe where the control is set before any changes in case you want to return to optimum Stereo operation. Adjust the control fully counterclockwise (CCW) for Mono operation of the receiver.

5.250 KHz FREQUENCY SEPARATION:

To make the adjustment remove the cover and locate the DIP switches (refer to 1.0 on page 2). Set R1=0 and $\mathrm{R} 2=1$. The reference will be 50 KHz . The D0 to D12 settings are the binary number for the PLL divider. The divider is determined by adding 10.7 MHz to the desired receive frequency and then dividing by 50 KHz .

For example: If the desired frequency is 106.650 MHz the divider would be $106.650+10.7$ or 117.350 MHz divided by 50 KHz (or 0.050) for 2347 . The binary number would be, starting at D0: $1,1,0,1,0,1,0,0,1,0,0,1,0$. The " 1 " being the "ON" switch position (switch handle towards the microprocessor).

If you need assistance, refer to our website, www. daytonindustrial.com or contact the Engineering Dept. (see page 1 for contact info).

Figure 1 Receiver Board Component Layout

* Frequency Setting switches

菏		

-		- 0	- 0	- 0	- 0	O	O	-	O	O	- 0	O			-	$\stackrel{\text { No }}{0}$	- 0.	-					- 0							-					-						0.0
\bigcirc		0	$\bigcirc 0$	- 0	- 0	-	0	-	O	0	- 0	\bigcirc				- 0	0.0	-					- 0	- 0					-	- 0	- 0	- 0	00		-	-		-			\bigcirc
-		--	--	- -	--	-	-	-	-	--	--	--	-		$-\mathrm{C}$	음-	--	--			-																				
\bigcirc		- 0	$\bigcirc 0$	0 -	- 0	-	O	-	-	0	- 0	-				®○	00	-	-			- 0		-	-	-		-	-	0	-	0 -			-	0		-	-		-
-		- 0	$\bigcirc 0$	$\bigcirc 0$	- 0	-	0	-	-	0	0	-	-			-	0.0	-	-	-		- 0	o	- 0		-			-	-	- 0	-				-	-	-	-		0
-		- 0	- 0	- 0	- 0	0	-	O	\bigcirc	0	-	-				O 0	0 O 0	0				- 0		- 0	0				-	-	0	-	-	0							
-		- 0	- 0	-	- 0	\bigcirc										-																						-			\bigcirc
						-0	0	0	0	0	0 O	0				\bigcirc	000	0		O															-	o	-	o			0
						0	0	0	0	0	o 0	0				d-					-	-	- 0	- 0			0								0	10					$\bigcirc 0$
0		-				-	O	0	0	-						$\bigcirc \bigcirc$	00						- 0							-						-					
			00	-		0	0	o		-	$0 \text { ㅇ }$	0			\bigcirc	N-	-0	00			-															-					- -
		- 0	O-	-0	\bigcirc	-0	0		-	- 0	- -	- 0				- 0	0																								- -
-	00	0	00	00	0 O	0	O	0	0	0	0	- 0				O 0	000	\bigcirc											-	-											$\bigcirc 0$
(४\|	$\dot{\sigma}$	$\mathfrak{c o m}$	\mathfrak{c}	$\begin{array}{ll} \hline s \\ \infty \\ \infty \\ \hline \end{array}$	$\stackrel{N}{\hat{N}} \stackrel{\rightharpoonup}{\circ}$	$\stackrel{9}{\dot{\sigma}} \stackrel{\rightharpoonup}{\circ}$	-	\%	on	-	$\begin{array}{c\|c\|} \hline & - \\ \infty & \check{\circ} \\ \hline \end{array}$	¢					-		-	$\stackrel{\square}{\square}$	-			우앙	-	-	-	-	웅	-	-	-	-	$\begin{aligned} & \mathrm{m} \\ & \dot{i} \\ & \hline \end{aligned}$	$\stackrel{n}{0}$	앙	안	O	-		\mathfrak{c}

[^0]: This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
 (1) This device may not cause harmful interference, and
 (2) This device must accept any interference received that may cause undesired operation.

